K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 2 2019

Lời giải:

Vì $G$ là giao điểm của hai đường trung tuyến nên $G$ là trọng tâm. Theo tính chất trọng tâm và đường trung tuyến thì \(AG=\frac{2}{3}AM\)

Khi đó:
\(\frac{S_{ABG}}{S_{ABM}}=\frac{AG}{AM}=\frac{2}{3}(1)\)

Mà: \(\frac{S_{ABM}}{S_{ABC}}=\frac{BM}{BC}=\frac{1}{2}(2)\)

Từ \((1);(2)\Rightarrow \frac{S_{ABG}}{S_{ABC}}=\frac{2}{3}.\frac{1}{2}=\frac{1}{3}\)

\(\Rightarrow S_{ABC}=3S_{ABG}=3.336=1008(cm^2)\)

8 tháng 4 2020

Hình bạn tự kẻ nhé!

Nối I với C.

- Vì tam giác ABM và tam giác AMC có chung chiều cao hạ từ A xuống BC nên:

                        SABM / SAMC = BM / MC = 1.

=> SABM = SAMC

CMTT, ta có:     SBIM = SCMI

=> SABM - SBIM = SAMC - SCMI

hay            SABI  = SAIC

- Vì tam giác ABD và tam giác BDC có chung chiều cao hạ từ B xuống AC nên:

                  SABD / SBDC = AD / CD = 1/2

=> SBDC = 2 SABD

CMTT, ta có: SDIC = 2 SAID

=> SBDC - SDIC = 2 ( SABD - SAID )

hay           SBIC = 2 SAIB

Ta có:     SAIB + SAIC + SBIC = SABC

=>        SAIB + SAIB + 2 SAIB = 20

<=>                            4 SAIB = 20

<=>                               SAIB = 5. (cm2)

Vậy SAIB = 5 cm2.