Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ (6x+1)2+(6x-1)2-2(1+6x)(6x-1)
=36x2+12x+1+36x2-12x+1-2(6x-1+36x2-6x)
=36x2+12x+1+36x2-12x+1+2-72x2
=1+1+2=4
b/ 3(22+1)(24+1)(28+1)(216+1)
Ta có: 3=4-1=22-1
<=> (22-1)(22+1)(24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)
=232-1
a) Ta có : (x + 5)2 - 16 = 0
=> (x + 5)2 = 16
=> (x + 5)2 = (-4) ; 4
\(\Leftrightarrow\orbr{\begin{cases}x+5=-4\\x+5=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}\)
RÚT GỌN BIỂU THỨC
a) 32(x+2)(x-2)-1/2(6-8x)2 -48
b) (x+9)(x2+27)-(x+3)3
c) (6x+1)2(6x-1)2-2(1+6x)(6x-1)
Bài 1 :
a ) Ta có :
\(3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)
\(=15^4-\left(15^4-1\right)\)
\(=15^4-15^4+1\)
\(=1\)
b ) Ta có :
\(x=11\Rightarrow x+1=12\)
Thay \(x+1=12\) vào biểu thức ta được :
\(x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+111\)
\(=x^4-x^4-x^3+x^3-x^2+x^2-x+111\)
\(=111-x\)
Thay \(x=11\) vào biểu thức vừa rút gọn ta được :
\(111-11=100\)
\(a,3^4.5^4-\left(15^2+1\right)\left(15^2-1\right)\)
\(=\left(3.5\right)^4-\left(15^4-1\right)\)
\(=15^4-15^4+1\)
\(=1\)
Bài 2:
\(a,\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2.\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2\)
\(=2^2=4\)
\(b,3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
1,
Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy \(A=2^{32}-1\)
2, \(x^2-6x=-9\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(x-3=0\)
\(x=3\)
Vậy \(x=3\)