K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:

c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)

\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)

\(=2^{36}-1\)

b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)

\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)

\(=x^8.\left(-4\right)\)

4 tháng 7 2018

\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1\)

28 tháng 11 2016

Rút gọn các phân thức:

a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)

b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)

c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)

d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)

24 tháng 8 2018

a) (x - 2)(x + 2)(x2 + 4) - (x2 - 3)(x2+3)
= (x2 - 4)(x2 + 4) - (x2 - 3)(x2+3)

= x4-16-x4+9

= -7

24 tháng 8 2018

a) \(\left(x-2\right)\left(x+2\right)\left(x^2+4\right)-\left(x^2-3\right)\left(x^2+3\right)\)

\(=\left(x^2-4\right)\left(x^2+4\right)-\left(x^4-9\right)\)

\(=\left(x^4-16\right)-\left(x^4-9\right)\)

\(=x^4-16-x^4+9\)

\(=-7\)

17 tháng 8 2016

1/ -3x+ 3x2

13 tháng 6 2019

#)Giải :

a) x(2x2-3) - x2(5x+1) + x2

= 2x- 3x - 5x- x+ x2

= - 3x- 3x