Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 1 = 2
1 + 2 = 3
1 + 3 = 4
1 + 4 = 5
1 + 5 = 6
# chúc bạn bọc tốt
1 + 1 = 2
1 + 2 = 3
1 + 3 = 4
1 + 4 = 5
1 + 5 = 6
Chúc bn hok tốt ~
1+11=12
1111+11111=12222
89309+8=89316
93651:1=93551
83626+1=83627
1865+1=1866
87366+8=87374
8276+2=8278
8365-87=8278
1+11=12
1111+11111=12222
89309+8=89317
93651:1=93651
83626+1=83627
1865+1=1866
87366+8=87374
8276+2=8278
8365-87=8278
#Học tốt
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
Hệ vecto đã cho độc lập tuyến tính
Đặt \(\left\{{}\begin{matrix}x_1=\left(1;0;1\right)\\x_2=\left(1;-1;1\right)\\x_3=\left(1;2;0\right)\end{matrix}\right.\)
Chọn \(y_1=x_1\)
Chọn \(y_2=x_2+tx_1\) với \(t=-\frac{< x_2;y_1>}{< y_1;y_1>}=-\frac{1.1+0.\left(-1\right)+1.1}{1^2+0^2+1^2}=-1\)
\(\Rightarrow y_2=\left(1;-1;1\right)+\left(-1;0;-1\right)=\left(0;-1;0\right)\)
Chọn \(y_3=x_3+t_1y_1+t_2y_2\) với:
\(t_1=-\frac{< x_3;y_1>}{< y_1;y_1>}=-\frac{1.1+0.2+1.0}{1^2+0^2+1^2}=-\frac{1}{2}\)
\(t_2=-\frac{< x_3;y_2>}{< y_2;y_2>}=-\frac{1.0+2.\left(-1\right)+0.0}{0^2+\left(-1\right)^2+0^2}=-\frac{-2}{1}=2\)
\(\Rightarrow y_3=\left(1;2;0\right)+\left(-\frac{1}{2};0;-\frac{1}{2}\right)+\left(0;-2;0\right)=\left(\frac{1}{2};0;-\frac{1}{2}\right)\)
Vậy ta có hệ trực giao: \(\left\{{}\begin{matrix}y_1=\left(1;0;1\right)\\y_2=\left(0;-1;0\right)\\y_3=\left(\frac{1}{2};0;-\frac{1}{2}\right)\end{matrix}\right.\)