K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Ta có : b+c<a+1

=> a-b-c+1>0 (1)

Mà : b<a => a-b>0

(1) (=) -c+1>0 => c<1=> 1-c>0

Ta lại có : b+c>1 => b>1-c<0

Vậy : b<0

23 tháng 2 2017

cho mik xin lỗi b<a nhé

24 tháng 2 2016

3 chấm xuống dòng

2 tháng 9 2019

Vì \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{b}{b}\Rightarrow a< b\)  (vì b >0)

Có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)

        \(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)

Vì b,c > 0 => b + c > 0 => b(b+c) > 0

Vì a < b , c>0 => ac < bc => \(\frac{ab+ac}{b\left(b+c\right)}< \frac{ab+bc}{b\left(b+c\right)}\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)

2 tháng 9 2019

Ta có:

(a + c) / (b + c) = (a + b + c) / (b + c) - b/(b + c) = a/(b + c) + 1 - b/(b + c) (1)

Mà a/b < 1 nên a < b (2)

Từ (1),(2) suy ra:

a/(b + c) - b/(b + c) + 1 < 1

Vậy nên ta có a/b < (a + c) /(b+c) 

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần bổ sung thêm điều kiện $a,b,c,d$ là số dương nhé. Nếu không với $a=-4, b=-3, c=-2, d=-1$ thì đpcm là sai.

Lời giải:

Ta có:

$\frac{b+d}{a+b+c+d}-\frac{1}{2}=\frac{b+d-(a+c)}{2(a+b+c+d)}$

$=\frac{(b-a)+(d-c)}{2(a+b+c+d)}>0$ do $b>a, d> c$ và $a,b,c,d$ là các số dương

$\Rightarrow \frac{b+d}{a+b+c+d}> \frac{1}{2}$