Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2\times3}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{98\times99}\)
\(=\frac{1}{6}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}+...+\frac{1}{98\times99}\)
\(=\frac{1}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}\)
\(=\frac{1}{6}+\frac{1}{4}-\frac{1}{99}=\frac{161}{396}>\frac{160}{400}=\frac{2}{5}\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)+\left(\dfrac{5}{6}+\dfrac{19}{20}+...+\dfrac{2549}{2550}\right)\)
\(B=\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+..+\dfrac{1}{50\cdot51}\right)+\left(1-\dfrac{1}{2\cdot3}\right)+\left(1-\dfrac{1}{3\cdot4}\right)+...+\left(1-\dfrac{1}{50\cdot51}\right)\)
\(B=\left(1+1+...+1\right)+\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{50\cdot51}\right)\)
\(B=1\cdot49=49\) (vì có (50 - 2) : 1 + 1 = 49 số hạng 1)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
chúc bn học tốt
\(1,27+2,77+4,27+5,77+...+31,27+32,47\)
\(=\left(1,27+32,77\right)+\left(2,77+31,27\right)+....+\left(16,27+17,77\right)\)
\(=34,04+34,04+....+34,04\)( 11 số hạng)
\(=34,04.11=374,44\)
chúc bn học tốt
Ta có 1/4 x 4/1 + 1/5 x 6/1 + 1/6 x 7/1 + 1/7 x 8/1
Ta có 1/4 x 4/1 = 1. => 1 + 6/5 + 7/6 + 8/7
1 + 6/5 + 7/6 + 8/7 = 11/5 + 7/6 + 8/7 = 101/30 + 8/7 = 947/210
P/S: MIK KO BIẾT CÁCH LÀM NHANH NÊN CHỈ THẾ NÀY THÔI !
A= 5.(1/5.6+1/6.7+...+1/10.11)
A=5.(1/5-1/6+1/6-1/7+.....+1/10-1/11)
A=5.(1/5-1/11)
A=5.6/55=6/11
Bài làm:
\(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{9.10}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{10-9}{9.10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{10}\right)=2.\frac{4}{10}=\frac{4}{5}\)
\(6xy+\left(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\right)=\frac{29}{8}\)
Đăt \(A=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{7x8}\)
\(\Rightarrow A=\frac{3-2}{2x3}+\frac{4-3}{3x4}+\frac{5-4}{4x5}+...+\frac{8-7}{7x8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(\Rightarrow6xy+A=6xy+\frac{3}{8}=\frac{29}{8}\Rightarrow6xy=\frac{26}{8}\Rightarrow y=\frac{26}{8x6}\)
\(\frac{1}{5×6}+\frac{1}{6×7}+\frac{1}{7×8}+...+\frac{1}{24×25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{5}{25}-\frac{1}{25}\)
\(=\frac{4}{25}\)
\(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)\(\left(=0,16\right)\)