Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\dfrac{1}{x-1}-\dfrac{1}{x+1}\)
\(=\dfrac{1.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1+\left(-x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x^2-1}\)
2. \(\dfrac{x}{x^2-1}-\dfrac{1}{x-1}\)
\(=\dfrac{x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x+\left(-x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{-1}{x^2-1}\)
3. \(\dfrac{1}{x\left(x-y\right)}-\dfrac{1}{x\left(x-y\right)}\)
\(=\dfrac{1}{y\left(x-y\right)}+\dfrac{-1}{x\left(x-y\right)}\)
\(=\dfrac{1x}{y\left(x-y\right)x}+\dfrac{-1y}{x\left(x-y\right)y}\)
\(=\dfrac{x}{xy\left(x-y\right)}+\dfrac{-y}{xy\left(x-y\right)}\)
\(=\dfrac{x-y}{xy\left(x-y\right)}=\dfrac{1}{xy}\)
4. \(\dfrac{1}{x}-\dfrac{1}{x-1}\)
\(=\dfrac{1\left(x-1\right)}{x\left(x-1\right)}-\dfrac{1x}{\left(x-1\right)x}\)
\(=\dfrac{x-1}{x\left(x-1\right)}+\dfrac{-x}{x\left(x-1\right)}\)
\(=\dfrac{\left(x-1\right)-x}{x\left(x-1\right)}\)
\(=\dfrac{-1}{x\left(x-1\right)}\)
5. \(\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(=\dfrac{1\left(x+1\right)}{x\left(x+1\right)}-\dfrac{1x}{\left(x+1\right)x}\)
\(=\dfrac{x+1}{x\left(x+1\right)}+\dfrac{-x}{x\left(x+1\right)}\)
\(=\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}\)
6. \(\dfrac{1}{2x^2-10x}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{2x\left(x-5\right)}-\dfrac{1}{x-5}\)
\(=\dfrac{1}{2x\left(x-5\right)}-\dfrac{1.2x}{2x\left(x-5\right)}\)
\(=\dfrac{1}{2x\left(x-5\right)}+\dfrac{-2x}{2x\left(x-5\right)}\)
\(=\dfrac{1-2x}{2x\left(x-5\right)}\)
7. \(\dfrac{x-1}{x^2-1}.\dfrac{x+1}{x+3}\)
\(=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(=\dfrac{x^2-1}{\left(x^2-1\right)\left(x+3\right)}\)
8. \(\dfrac{2}{2x^2+10x}.\dfrac{x+5}{3x}\)
\(=\dfrac{2x\left(x+5\right)}{2x^2+10x.3x}\)
\(=\dfrac{2\left(x+5\right)}{2x\left(x+5\right)3x}\)
\(=\dfrac{2}{6x^2}=\dfrac{1}{3x^2}\)
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2014}+\frac{1}{2015}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)=\frac{1}{1008}+\frac{1}{1009}+....+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Leftrightarrow S-P=0\) \(\Rightarrow\left(S-P\right)^{2016}=0\)
đặt A=(1-1/3)........
Ta có A=\(\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}\cdot...\cdot\frac{209}{210}=\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}\cdot...\cdot\frac{418}{420}=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\frac{3\cdot6}{4\cdot5}\cdot...\cdot\frac{19\cdot22}{20\cdot21}\)
=\(\frac{1\cdot4\cdot2\cdot5\cdot3\cdot6\cdot...\cdot19\cdot22}{2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot...\cdot20\cdot21}=\frac{\left(1\cdot2\cdot3\cdot...\cdot19\right)\cdot\left(4\cdot5\cdot6\cdot...\cdot22\right)}{\left(2\cdot3\cdot4\cdot...\cdot20\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot21\right)}\)
=\(\frac{1\cdot22}{20\cdot3}=\frac{11}{30}\)
Đặt \(A=\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
=>\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
=>\(A=\frac{2.2}{3.2}.\frac{5.2}{6.2}.\frac{9.2}{10.2}.\frac{14.2}{15.2}...\frac{209.2}{210.2}\)
=>\(A=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{418}{420}\)
=>\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{19.22}{20.21}\)
=>\(A=\frac{\left(1.4\right).\left(2.5\right).\left(3.6\right).\left(4.7\right)...\left(19.22\right)}{\left(2.3\right).\left(3.4\right).\left(4.5\right).\left(5.6\right)...\left(20.21\right)}\)
=>\(A=\frac{\left(1.2.3.4...19\right).\left(4.5.6.7...22\right)}{\left(2.3.4.5...20\right).\left(3.4.5.6...21\right)}\)
=>\(A=\frac{1.22}{20.3}\)
=>\(A=\frac{22}{60}=\frac{11}{30}\)
Vậy \(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)=\frac{11}{30}\)
1.a) (2 + 1)(22 + 1)((24 + 1)(28 + 1) = (22 - 1)(22 + 1)(24 + 1)(28 + 1) = (24 - 1)(24 + 1)(28 + 1)
= (28 - 1)(28 + 1) = 216 - 1
b) 7(23 + 1)(26 + 1)(212 + 1)(224 + 1) = (23 - 1)(23 + 1)(26 + 1)(212 + 1)(224 + 1)
= (26 - 1)(26 + 1)(212 + 1)(224 + 1) = (212 - 1)(212 + 1)(224 + 1) = (224 - 1)(224 + 1) = 248 - 1
c) (x2 - x + 1)(x2 + x + 1)(x2 - 1) = [(x2 - x + 1)(x + 1)][(x2 + x + 1)(x - 1)] = (x3 + 1)(x3 - 1) = x6 - 1
2. Đặt A = 4x - x2 - 1 = -(x^2 - 4x + 4) + 3 = -(x - 2)2 + 3 \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MaxA = 3 khi x = 2
a)⇔(2x+1)(2x+1)/(2x-1)(2x+1)-(2x-1)(2x-1)/(2x-1)(2x+1)=8/(2x-1)(2x+1)
⇔(2x+1)^2-(2x-1)^2=8
⇔[(2x+1)-(2x-1)][(2x+1)(2x-1)]=8
⇔2.4x=8
⇔x=1.S={1}
a: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1
b: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x\cdot\left(1-\dfrac{x-1}{x+1}\right)\)
=>\(\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{x+1-x+1}{x+1}\)
=>\(\dfrac{4x}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{2}{x+1}\)
=>4x=6x(x-1)
=>6x^2-6x-4x=0
=>6x^2-10x=0
=>2x(3x-5)=0
=>x=0 hoặc x=5/3
2 nha bạn ! Tên nick đẹp ghê ! Hihi
1 + 1
= 1 x 2
= 2
k cho tớ nhé
thank you very much