Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Chiều dài của thanh: \(l=l_0(1+\alpha.\Delta t)\)
Thanh nhôm: \(l=50.[1+24.10^{-6}.(170-20)]=50,18cm\)
Thanh thép: \(l=50,12.[1+12.10^{-6}.(170-20)]=50,21cm\)
b/ Giả sử ở nhiệt độ t, hai thanh có cùng chiều dài
\(\Rightarrow 50.[1+24.10^{-6}.(t-20)]=50,12.[1+12.10^{-6}.(t-20)]\)
Bạn giải phương trình trên rồi tìm t nhé
- Chọn C.
- Áp dụng công thức Δ\(l=l\) - \(l_0=al_0\Delta t\) , ta được
Δl = 11. \(10^6\) .1 .(40 - 20) = 220.\(10^{-6}\) (m) = 0,22 mm
Khi nhiệt độ tăng từ 0 ° C đến t ° C thì độ dãn dài của :
- Thanh thép : ∆ l 1 = l 01 α 1 t.
- Thanh đồng : ∆ l 2 = l 02 α 2 t.
Từ đó suy ra độ dài chênh lệch của hai thanh thép và đồng ở nhiệt độ bất kì t ° C có giá trị bằng :
∆ l = ∆ l 1 - l 2 l 1 = l 01 α 1 t - l 02 α 2 t = ( l 01 α 1 - l 02 α 2 )t = 25 mm
Công thức này chứng tỏ ∆ l phụ thuộc bậc nhất vào t.
Rõ ràng, muốn ∆ l không phụ thuộc t, thì hệ số của t phải luôn có giá trị bằng không, tức là :
l 01 α 1 - l 02 α 2 = 0 ⇒ l 02 / l 01 = α 1 / α 2
hay:
Từ đó suy ra độ dài ở 0 ° C của :
- Thanh đồng : l 02 = 2( l 01 - l 02 ) = ∆ l = 2.25 = 50 mm.
- Thanh thép : l 01 = l 02 + ∆ l = 50 + 25 = 75 mm.
Đáp án: D
Gọi l1 là chiều dài của thanh đồng thau, l2 là chiều dài của thanh thép.
Theo giả thiết, ở nhiệt độ bất kỳ ta đều có:
l2 – l1 = 2 cm (1)
Ở 0 oC ta cũng có:
l02 – l01 = 2 cm (2)
Mặt khác, ta lại có:
l2 = l02(1 + α2∆t) và l1 = l01(1 + α1∆t)
Thay l1, l2 vào (1) ta được:
l02(1 + α2∆t) - l01(1 + α1∆t) = l02 – l01
→ l02.α2 = l01.α1 (3)
Từ (2) và (3), chú ý rằng :
α2 = 18.10-6 K-1 và α1 = 11.10-6 K-1
Ta suy ra được chiều dài của thanh thép và thanh đồng ở 0 oC là 5,1cm và 3,1cm
Khi nhiệt độ tăng từ 0 ° C đến t ° C thì độ dãn dài của :
- Thanh thép : ∆ l 1 = l 01 α 1 t.
- Thanh đồng : ∆ l 2 = l 02 α 2 t.
Từ đó suy ra độ dài chênh lệch của hai thanh thép và đồng ở nhiệt độ bất kì t ° C có giá trị bằng :
∆ l = ∆ l1 – ∆ l2 = l 01 α 1 t – l 02 α 2 t = ( l 01 α 1 – l 02 α 1 )t = 50 mm
Công thức này chứng tỏ ∆ l phụ thuộc bậc nhất vào t. Rõ ràng, muốn ∆ l không phụ thuộc t, thì hệ số của t phải luôn có giá trị bằng không, tức là :
hay:
Từ đó suy ra độ dài ở 0 ° C của :
- Thanh đồng : l 02 = 3( l 01 - l 02 ) = ∆ l = 3.50 = 150 mm.
- Thanh thép : l 01 = l 02 + ∆ l = 150 + 50 = 200 mm.
Thước kẹp bằng hợp kim Inva : Hợp kim Inva có hệ số nở dài α i n v = 0,9. 10 - 6 K - 1 Áp dụng công thức tính tương tự phần (a), ta xác định được sai số tuyệt đối của thước kẹp này khi nhiệt độ của thước tăng từ t 0 = 0 ° C đến t 1 = 50 ° C là :
∆ l’ = l 0 α i n v t 1 ≈ 150.0,9. 10 - 6 .50 = 6,75 μ m
Muốn bỏ viên bi thép vừa lọt lỗ thủng thì đường kính D của lỗ thủng ở nhiệt độ t ° C phải vừa đúng bằng đường kính d của viên bi thép ở cùng nhiệt độ đó, tức là
D = D 0 ( 1 + α t) = d
trong đó D0 là đường kính của lỗ thủng ở 0 ° C, α là hệ số nở dài của thép. Từ đó suy ra nhiệt độ cần phải nung nóng tấm thép :
Khi ở nhiệt độ 40oC thì thước thép này dài thêm là: \(\Delta l=\alpha l_0\left(t-t_0\right)=1,2.10^{-5}.0,5.\left(40-0\right)=2,4.10^{-4}m=0,00024m\)
Chiều dài của thước thép ở nhiệt độ 40oC là:
\(0,5+0,00024=0,50024\) m