Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
a: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên H là trung điểm của BC
b: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Câu 6:
Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Câu 1
\(\left\{{}\begin{matrix}7A,7B\in N\\7B=7A+5\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7B>7A\\\dfrac{7A}{7B}=\dfrac{8}{9}\end{matrix}\right.\)\(\dfrac{7A}{7B}=\dfrac{8}{9}\Rightarrow\dfrac{7A}{8}=\dfrac{7B}{9}=\dfrac{7B-7A}{9-8}=7B-7A=5\)
\(\Rightarrow\left\{{}\begin{matrix}7A=8.5=40\left(emhs\right)\\7B=9.5=45\left(emhs\right)\end{matrix}\right.\)
Câu2
Phần a
Tạm hiểu A=a {chuẩn A\(\ne a\)} vớ đề này hiểu giống nhau
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{\left(a-b\right)}{c-d}=\dfrac{\left(a+b\right)}{c+d}\)
\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\dfrac{a}{c}\dfrac{b}{d}=\dfrac{ab}{cd}\)
phầnb
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)\(M=\left(\dfrac{a+b}{c}\right)\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)=2.2.2=8\)
Bài 2:
a, Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{-5}=\dfrac{a+b}{2+\left(-5\right)}=\dfrac{21}{-3}=-7\)
(do \(a+b=21\))
\(\Rightarrow\left\{{}\begin{matrix}a=-7.2=-14\\b=-7.\left(-5\right)=35\end{matrix}\right.\)
Vậy \(a=-14;b=35\)
b, Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:
\(\dfrac{-10}{a}=\dfrac{-15}{b}=\dfrac{-10-\left(-15\right)}{a-b}=\dfrac{5}{-5}=-1\)
(do \(a-b=-5\))
\(\Rightarrow\left\{{}\begin{matrix}a=-10:\left(-1\right)=10\\b=-15:\left(-1\right)=15\end{matrix}\right.\)
Vậy \(a=10;b=15\)
Chúc bạn học tốt!!!
c, Ta có:
\(3x=2y\Rightarrow21x=14y\)
\(7y=5z\Rightarrow14y=10z\)
\(\Rightarrow21x=14y=10z\Rightarrow\dfrac{21x}{210}=\dfrac{14y}{210}=\dfrac{10z}{210}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
(do \(x-y+z=32\))
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy \(x=20;y=30;z=42\)
Chúc bạn học tốt!!!
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đo: ΔABH=ΔACH
b: \(\widehat{BAD}=180^0-120^0=60^0\)
Xét ΔBDA vuông tại D và ΔBHA vuông tại H có
AB chung
góc DAB=góc HAB
DO đo: ΔBDA=ΔBHA
Suy ra: AD=AH
Bài 3:
a, \(x:\left(\dfrac{1}{3}-\dfrac{1}{5}\right)=\dfrac{-1}{2}\)
\(x:\left(\dfrac{5-3}{15}\right)=\dfrac{-1}{2}\)
\(x:\dfrac{2}{15}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}.\dfrac{2}{15}\)
\(x=\dfrac{\left(-1\right).1}{1.15}=\dfrac{-1}{15}\)
b,\(\left|x+1\right|-\dfrac{4}{5}=5\dfrac{1}{5}\)
\(\left|x+1\right|-\dfrac{4}{5}=\dfrac{26}{5}\)
\(\left|x+1\right|=\dfrac{26+4}{5}=\dfrac{30}{5}=6\)
=> \(x+1=\pm6\), ta có hai trường hợp:
Trường hợp 1:
x + 1 = 6
x = 6 - 1 = 5
Trường hợp 2:
x + 1 = -6
x = (- 6) + (- 1) = -7
Vậy x ∈ {5;-7}
Gọi số học sinh lớp 7A, 7B, 7C lần lượt là: x; y; x, biết x; y; z tỉ lệ với 10; 9; 8, ta có:
\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{8}\) và x - y = 5
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{8}=\dfrac{x-y}{10-9}=\dfrac{5}{1}=5\)
Suy ra:
\(\dfrac{x}{10}=5\) => x = 5 . 10 = 50
\(\dfrac{y}{9}=5\) => y = 5 . 9 = 45
\(\dfrac{x}{8}=5\) => x = 5 . 8 = 40
=> x = 50, y = 45, z = 40
Vậy lớp 7A có 50 học sinh;
lớp 7B có 45 học sinh;
lớp 7C có 40 học sinh;
Bài 2:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{b-a}{5-4}=10\)
Do đó:a=40; b=50
b: \(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{2}{3}\\\dfrac{b}{c}=\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}\\\dfrac{b}{6}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{5}=k\)
=>a=4k; b=6k; c=5k
Ta có: \(c^2-a^2=81\)
\(\Leftrightarrow25k^2-16k^2=81\)
\(\Leftrightarrow9k^2=81\)
\(\Leftrightarrow k^2=9\)
Trường hợp 1: k=3
=>a=12; b=18; c=15
Trường hợp 2: k=-3
=>a=-12; b=-18; c=-15
1.
a.
\(\left(\dfrac{-4}{5}+\dfrac{2}{3}\right)\cdot\dfrac{7}{11}+\left(\dfrac{-1}{5}+\dfrac{1}{3}\right)\cdot\dfrac{7}{11}\\ =\dfrac{7}{11}\cdot\left(\dfrac{-4}{5}+\dfrac{2}{3}+\dfrac{-1}{5}+\dfrac{1}{3}\right) \\ =\dfrac{7}{11}\cdot\left[\left(\dfrac{-4}{5}+\dfrac{-1}{5}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\right]\\ =\dfrac{7}{11}\cdot\left[\left(-1\right)+1\right]\\ =\dfrac{7}{11}\cdot0\\ =0\)
b.
\(\left(-3^2\right)\cdot\left(\dfrac{3}{4}-0,25\right)-\left|-2\right|\\ =\left(-9\right)\cdot0,5-2\\ =-4,5-2\\ =-6,5\)
2.
\(y=f\left(x\right)=\left(m+1\right)x\\ \Rightarrow4=f\left(2\right)=\left(m+1\right)\cdot2\\ \Rightarrow m+1=2\\ \Leftrightarrow m=1\)
Tự
3.
a.
\(\left|x-\dfrac{2}{5}\right|=\dfrac{3}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{3}{4}\\x-\dfrac{2}{5}=\dfrac{-3}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{20}\\x=\dfrac{-7}{20}\end{matrix}\right.\)
b.
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}=\dfrac{x+2y-z}{5+6-4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)
Bài 1:
Giải:
Ta có: \(\dfrac{4x}{6y}=\dfrac{2x+8}{3y+11}\)
\(\Rightarrow\dfrac{2x}{3y}=\dfrac{2x+8}{3y+11}\)
\(\Rightarrow\left(3y+11\right)2x=\left(2x+8\right)3y\)
\(\Rightarrow6xy+22x=6xy+24y\)
\(\Rightarrow22x=24y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{24}{22}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{12}{11}\)
Vậy \(\dfrac{x}{y}=\dfrac{12}{11}.\)
Câu 4:
Giải:
Gọi số h/s lớp 7A, 7B lần lượt là a,b (a,b \(\in N\)*)
Theo bài ra ta có: \(a+b=65\) và \(\dfrac{a}{6}=\dfrac{b}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{6}=\dfrac{b}{7}=\dfrac{a+b}{6+7}=\dfrac{65}{13}=5\)
Khi đó \(\left[{}\begin{matrix}\dfrac{a}{6}=5\\\dfrac{b}{7}=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=30\\b=35\end{matrix}\right.\)
Vậy số h/s lớp \(\left[{}\begin{matrix}7A:30\\7B:35\end{matrix}\right.\).