Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý
Giả sử x=0;x=1;x=-1 là 3 giá trị đó.
Ta có:f(0)=a.02+b.0+c=c
f(1)=a.12+b.1+c=a+b+c
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Do đó c=0;a+b+c=0;a-b+c=0
=>a-b=0=>a=b
và a+b=0=>a=b=0
Vậy a=b=c=0
ta có
\(\Delta\)=( -m )2 -4.1.( -3m-1) =m2 +12m+4
Để phương trình >0
\(\Leftrightarrow\) \(\Delta\)>0
\(\Leftrightarrow\) m2 +12m+4>0
\(\Leftrightarrow\) m \(\in\) \(\left(-\infty;-6-4\sqrt{2}\right)\cap\left(-6+4\sqrt{2};+\infty\right)\)
a) 2 (x + 5) - x2 - 5x = 0
=> 2 (x + 5) - (x2 + 5x) = 0
=> 2 (x + 5) - x (x + 5) = 0
=> (2 - x) (x + 5) = 0
Có 2 TH xảy ra :
TH1 : 2 - x = 0 => x = 2
TH2 : x + 5 = 0 => x = -5
a, 2\((\)x +5\()\) - x2 - 5x =0
\(\Leftrightarrow\) 2x2 +10-x2 - 5x=0
\(\Leftrightarrow\)x2 - 5x +10=0
\(\Delta'\) = \((\) -5\()\)2 - 1. 10=15 \(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{15}\)
\(\Rightarrow\) x1 = 5 + \(\sqrt{15}\) ; x2 = 5- \(\sqrt{15}\)
pt có 2 nghiệm ........
b, 2x2 + 3x -5 =0
có a+b+c= 2+3+ \((\) -5\()\) =0
\(\Rightarrow\) x1=1 , x2 =\(\dfrac{-5}{2}\)
c, \((\) x-1\()\)2 + 4.\((x+2)\) - \((x^2-3)\)=0
\(\Rightarrow x^2-2x+1+4x+8-x^{2^{ }}+3=0\)
\(\Leftrightarrow\) -2x +12 =0
\(\Leftrightarrow\)-2x=-12\(\Leftrightarrow\) x= 6
Thay K(0) = 4 vào đa thức K(x) ta có : a.0^2 + b.0 + c => c = 4 (1)
Thay K(1) = 3 và (1) vào đa thức K(x) ta có : a.1^2 + b.1 + 4 = a + b + 4 = 3 => a+b=-1 => a= -1 - b (2)
Thay K(-1) = 7 , (1) vào đa thức K(x) ta có : a.(-1)^2 + b.(-1) + 4 = a-b+4=7 => a-b=3 (3)
Thay (2) vào (3) ta có : -1 - b - b = -1 - 2b = 3 => 2b= -4 => b = -2
Thay b = -2 vào (3) ta có : a - (-2) = 3 => a = 1.
Vậy a + b + c = 1 + (-2) + 4 = 3
giả sử tất cả các phương trình sau đều vô nghiệm
\(\Rightarrow\left\{{}\begin{matrix}b^2-ac< 0\\c^2-ba< 0\\a^2-cb< 0\end{matrix}\right.\) cộng quế theo quế ta có : \(a^2+b^2+c^2-ab-bc-ca< 0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-2ac-2bc-2ca\right)< 0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2< 0\left(vôlí\right)\)
vậy điều giả sử lúc đầu là sai \(\Rightarrow\left(đpcm\right)\)