Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $f(x)$ chia hết cho $3$ với mọi \(x\in\mathbb{Z}\) nên ta có:
\(\left\{\begin{matrix} f(0)=c\vdots 3\\ f(1)=a+b+c\vdots 3 3\\ f(-1)=a-b+c\vdots 3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} c\vdots 3\\ a+b\vdots 3(1)\\ a-b\vdots 3 (2) \end{matrix}\right.\)
Từ \((1),(2)\Rightarrow 2a\vdots 3\). Mà $2$ không chia hết cho $3$ nên $a$ chia hết cho $3$
Có $a+b$ chia hết cho $3$ và $a$ chia hết cho $3$ nên $b$ cũng chia hết cho $3$
Do đó ta có đpcm
Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)
\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)
Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)
Ta lại có : \(a+b+c⋮3\)
mà \(b⋮3\) ; \(c⋮3\)
\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)
Vậy a,b,c \(⋮3\)
Thay K(0) = 4 vào đa thức K(x) ta có : a.0^2 + b.0 + c => c = 4 (1)
Thay K(1) = 3 và (1) vào đa thức K(x) ta có : a.1^2 + b.1 + 4 = a + b + 4 = 3 => a+b=-1 => a= -1 - b (2)
Thay K(-1) = 7 , (1) vào đa thức K(x) ta có : a.(-1)^2 + b.(-1) + 4 = a-b+4=7 => a-b=3 (3)
Thay (2) vào (3) ta có : -1 - b - b = -1 - 2b = 3 => 2b= -4 => b = -2
Thay b = -2 vào (3) ta có : a - (-2) = 3 => a = 1.
Vậy a + b + c = 1 + (-2) + 4 = 3
vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:
- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3
- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3
lại có c chia hết cho 3 (đã chứng minh)
nên suy ra a+b chia hết cho 3
- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c
mà c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)
nên suy ra 2a chia hết cho 3
mà (2,3)=1 (2 số nguyên tố cùng nhau)
suy ra a chia hết cho 3
mà a+b chia hết cho 3
nên suy ra b chia hết cho 3
vậy a,b,c chia hết cho 3
giả sử tất cả các phương trình sau đều vô nghiệm
\(\Rightarrow\left\{{}\begin{matrix}b^2-ac< 0\\c^2-ba< 0\\a^2-cb< 0\end{matrix}\right.\) cộng quế theo quế ta có : \(a^2+b^2+c^2-ab-bc-ca< 0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-2ac-2bc-2ca\right)< 0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2< 0\left(vôlí\right)\)
vậy điều giả sử lúc đầu là sai \(\Rightarrow\left(đpcm\right)\)
Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý
Giả sử x=0;x=1;x=-1 là 3 giá trị đó.
Ta có:f(0)=a.02+b.0+c=c
f(1)=a.12+b.1+c=a+b+c
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Do đó c=0;a+b+c=0;a-b+c=0
=>a-b=0=>a=b
và a+b=0=>a=b=0
Vậy a=b=c=0