Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét ΔABH có BI là đường phân giác
=>\(\dfrac{AB}{BH}\)=\(\dfrac{AI}{IH}\)(1)
Xét ΔABC có BD là đường phân giác
=> \(\dfrac{BC}{AB}\)=\(\dfrac{DC}{AD}\)
Mà \(\dfrac{BC}{AB}\)= \(\dfrac{AB}{BH}\)(cmt)
=>\(\dfrac{DC}{AD}\)=\(\dfrac{AB}{BH}\) (2)
Từ (1)(2)=>\(\dfrac{AI}{IH}\)=\(\dfrac{DC}{AD}\)
a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc ABC chung
Do đó:ΔBAH\(\sim\)ΔBCA
Suy ra:BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔHAB vuông tai H và ΔHCA vuông tại H có
góc HAB=góc HCA
Do đó: ΔHAB\(\sim\)ΔHCA
SUy ra: HA/HC=HB/HA
hay \(HA^2=HB\cdot HC\)
a: \(BC=\sqrt{13^2+20^2}=\sqrt{569}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{260\sqrt{569}}{569}\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
hay \(HD\cdot HC=AH^2\)
Bài 1:
B A C D H H
a,Xét ΔBAH và ΔBCA,có:
\(\widehat{B}\) : góc chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
⇒ ΔBAH ∼ ΔBCA (1) (gg)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇒ \(AB^2=BH.BC\)
C/m tương tự:
\(\Delta ACH\sim\Delta BCA\left(gg\right)\left(2\right)\)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=CH.BC\)
Từ(1)(2) ⇒ ΔBAH ∼ ΔACH
⇒ \(\dfrac{BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH.CH\)
b,Vì AD là phân giác của ΔBAC
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{1}{2}\)
ΔBAH ∼ ΔACH
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)
hay \(\dfrac{1}{2}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)
\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{1}{2}AH\\CH=2AH\end{matrix}\right.\Rightarrow\dfrac{HB}{HC}=\dfrac{\dfrac{1}{2}AH}{2AH}=\dfrac{1}{4}\)
AD là phân giác góc A nha