: Tìm điều kiện của x để các căn thức sau có nghĩa.

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

\(a,\sqrt{x-2}\)có nghĩa khi\(\sqrt{x-2}\ge0\)

 \(\Rightarrow x\ge2\)

\(b,\frac{1}{\sqrt{2x-1}}\)có nghĩa khi  \(\sqrt{2x-1}>0\)

                                               \(\Rightarrow2x>1\)

                                                  \(\Rightarrow x>\frac{1}{2}\)

10 tháng 9 2021

a)\(\sqrt{81}-\sqrt{80}\)\(.\sqrt{0,2}\)\(=\sqrt{9^2}-\sqrt{80.0,2}\)\(=9-\sqrt{16}\)\(=9-4=5\)

    \(\sqrt{\left(2-\sqrt{5}\right)^2}\)\(-\frac{1}{2}.\sqrt{20}\)\(=|2-\sqrt{5}|-\frac{1}{2}.\sqrt{4.5}\)\(=2-\sqrt{5}-\frac{1}{2}.2\sqrt{5}\)

   \(=2-\sqrt{5}-\sqrt{5}=2\)

Tôi lm đc đến đây thôi(@_@)

   \(\)

10 tháng 9 2021

ko biết

11 tháng 9 2021

Bài 4 : 

a, Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức : \(AB^2=BH.BC=16\Rightarrow AB=4\)cm 

Theo định lí Ptago : \(AC=\sqrt{BC^2-AB^2}=\sqrt{64-16}=4\sqrt{3}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{16\sqrt{3}}{8}=2\sqrt{3}\)cm 

b, Xét tam giác ABK vuông tại A, đường cao AD 

\(AB^2=BD.BK\)( hệ thức lượng ) (1) 

Xét tam giác ABC vuông tại A, đường cao AH

\(AB^2=BH.BC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) => \(BD.BK=BH.BC\)(3) 

c, Xét tam giác BHD và tam giác BKC 

^B _ chung 

(3) => \(BD.BK=BH.BC\Rightarrow\frac{BD}{BC}=\frac{BH}{BK}\)

Vậy tam giác BHD ~ tam giác BKC ( c.g.c )

=> \(\frac{S_{BHD}}{S_{BKC}}=\left(\frac{BD}{BC}\right)^2\)(4) 

Ta có : cosABD = \(\frac{DB}{AB}\)

=> cos2ABD = \(\left(\frac{DB}{AB}\right)^2\)=> cos2ABD = \(\frac{DB^2}{AB^2}=\frac{DB^2}{16}\)

=> \(\frac{1}{4}cos^2\widehat{ABD}=\frac{DB^2}{64}=\frac{DB^2}{8^2}=\frac{DB^2}{BC^2}=\left(\frac{DB}{BC}\right)^2\)

\(\Rightarrow\frac{1}{4}cos^2\widehat{ABD}=\frac{S_{BHD}}{S_{BKC}}\)theo (4) 

=> \(S_{BHD}=S_{BKC}.\frac{1}{4}cos^2\widehat{ABD}\)

11 tháng 9 2021

Bài 3 : 

a, Với \(x>0;x\ne1\)

\(A=\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right):\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

\(=\left(\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right):\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

b, Ta có : \(A=\frac{5}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{5}{3}\Rightarrow3\sqrt{x}+6=5\sqrt{x}\Leftrightarrow6=2\sqrt{x}\Leftrightarrow x=9\)

7 tháng 2 2018

0 bt l m à

AH
Akai Haruma
Giáo viên
20 tháng 1 2024

Hình a/

Áp dụng định lý Pitago:

$x+y=\sqrt{6^2+8^2}=10$ 

Áp dụng hệ thức lượng trong tam giác vuông:

$6^2=x(x+y)=10x\Rightarrow x=3,6$ 

$8^2=y(y+x)=10y\Rightarrow y=6,4$ 

AH
Akai Haruma
Giáo viên
20 tháng 1 2024

Hình b/

Áp dụng hệ thức lượng trong tam giác vuông:

$12^2=x(x+y)=20x$

$\Rightarrow x=\frac{12^2}{20}=7,2$ 

$y=20-x=20-7,2=12,8$ 

đáp án là x 3

26 tháng 11 2017

điền dấu

là      x         3

21 tháng 8 2021

B A C a

a, Ta có : tan a = CB/AB

sin a / cos a = CB/AC / BA/AC = CB/AB

=> ĐPCM 

Tương tự với cái kia nhaaaaaa

Do tan a = CB/AB (1)

Mà cot a = AB/CD (2)

Nhân theo vế (1) và (2) ta có ngay đpcm

b, Ta có : \(VT=\frac{AB^2}{AC^2}+\frac{BC^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\)(pitago)

17 tháng 4 2019

what?

30 tháng 9 2020

:v Làm bài 31 thôi nhá , còn lại all tự làm -..-

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)

Diện tích tăng thêm 36 cm2 nên ta có p/trình :

\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)

\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)

\(\Leftrightarrow xy+3x+3y+9=xy+72\)

\(\Leftrightarrow3x+3y=63\)

\(\Leftrightarrow x+y=21\)

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)

Diện tích giảm đi 26cm2 nên ta có phương trình :

\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)

\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)

\(\Leftrightarrow xy-4x-2y+8=xy-52\)

\(\Leftrightarrow4x+2y=60\)

\(\Leftrightarrow2x+y=30\)

Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :

\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm

25 tháng 2 2018

nhiều bài thế hả trời