Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left|x-2019\right|+2020-2}{\left|x-2019\right|+2020}=1-\frac{2}{\left|x-2019\right|+2020}\)
Vì \(\left|x-2019\right|\ge0\)
=> \(\left|x-2019\right|+2020\ge2020\)
=> \(\frac{2}{\left|x-2019\right|+2020}\le\frac{2}{2020}\)
=> \(-\frac{2}{\left|x-2019\right|+2020}\ge-\frac{2}{2020}\)
=> \(1-\frac{2}{\left|x-2019\right|+2020}\ge1-\frac{2}{2020}=\frac{2018}{2020}=\frac{1009}{1010}\)
=> \(A\ge\frac{1009}{1010}\)
Dấu "=" xảy ra <=> \(x-2019=0\Leftrightarrow x=2019\)
Vậy GTNN của A bằng 1009/1010 đạt tại x = 2019.
a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+cd< bc+dc\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)
\(ad< bc\)
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)
Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)
Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
Lại có :
\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)
a) đồ thị hàm số y = a.x đi qua điểm A(-1;2), nên ta có:
2 = a.(-1) \(\Rightarrow\) a = \(\dfrac{2}{-1}\) = -2
Vậy a = -2
b) * Xét điểm M(2;-3), ta có:
-3\(\ne\) -2.2
Vậy điểm M không thuộc d
* Xét điểm A(1;-2), ta có:
-2= -2.1
Vậy điểm A thuộc d
* Xét điểm I(-2;4), ta có:
4 = -2.(-2)
Vậy điểm I thuộc d
160 độ - NOQ = ?
Mình chỉ biết thế thôi !
Bởi vì năm nay mình mới lên lớp 5 mà hihihi ;;;; nháy mắt
o P M Q N
vì MN x PQ tại O nên \(\widehat{MOP}\)và \(\widehat{NOQ}\)là hai góc đối đỉnh (gt)
=> \(\widehat{MOP}=\widehat{NOQ}=\frac{160^0}{2}=80^0\)
p/s: đây là mk tự nghĩ -> tự làm, ok nếu sai cấm trách ko ns trc!
B=1+2+3+...+98+99
=(1+99)+(2+98)+...+(50+50)
=100+100+...+100
=100*25(Tính số số hạng chia 2)
=2 500
a; \(\dfrac{98}{99}\) > \(\dfrac{98}{100}\) (hai phân số dương có cùng tử số, phân số nào có mẫu lớn hơn thì phân số đó lớn hơn)
\(\dfrac{98}{100}\) > \(\dfrac{97}{100}\)(hai phân số dương có cùng mẫu số, phân số nào có tử số lớn hơn thì phân số đó lớn hơn)
Vậy \(\dfrac{97}{100}\) < \(\dfrac{98}{99}\)
b; \(\dfrac{19}{18}\) = 1 + \(\dfrac{1}{18}\)
\(\dfrac{2021}{2020}\) = 1 + \(\dfrac{1}{2020}\)
\(\dfrac{1}{18}\) > \(\dfrac{1}{2020}\) (hai phân số dương có cùng tử số phân số nào có mẫu số nhỏ hơn thì phân số đó lớn hơn)
\(\dfrac{19}{18}\) > \(\dfrac{2021}{2020}\) (hai phân số phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn)
Vậy: \(\dfrac{19}{18}\) > \(\dfrac{2021}{2020}\)