Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1002 - 992 + 982 - 972 + . . . + 22 - 12
= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + . . . (2 - 1)(2 + 1)
= 199 + 195 + . . . + 3
= 5050
B = 3(22 + 1)(24 + 1) . . . (264 + 1) + 1
= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1)(264 + 1) + 1
= (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (28 - 1)(28 + 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (216 - 1)(216 + 1)(232 + 1)(264 + 1) + 1
= (232 - 1)(232 + 1)(264 + 1) + 1
= (264 - 1)(264 + 1) + 1
= 2128 - 1 + 1
= 2128
1002-992+982-972+962...+22-1
=(100-99)x(100+99)+(98-97)x(98+97)+...+(2-1)x(2+1)
=100+99+98+98+...+2+1
=5050
chọn đúng cho mình điểm nha!
1002-992+982-972+962...+22-1
=(100-99)x(100+99)+(98-97)x(98+97)+...+(2-1)x(2+1)
=100+99+98+98+...+2+1
=5050
a) ( x2 - 2x + 2 )( x2 - 2 )( x2 + 2x + 2 )( x2 + 2 )
= [ ( x2 + 2 )2 - 4x2 ] ( x4 - 4 )
= ( x4 + 4 ) ( x4 - 4 )
= x8 - 16
b) ( a + b + c )2 + ( a + b - c )2 + ( 2a -b )2
= 2 ( a2 + b2 + c2 ) + 2 ( ab + bc + ac ) + 2 ( ab - bc - ac ) + ( 4a2 - 4ab + b2 )
= 2 ( a2 + b2 + c2 ) + 4ab - 4ab + 4a2 + b2
= 6a2 + 3b2 + 2c2
c) 1002 - 992 + 982 - 972 + ..... + 22 - 12
= ( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97 ) + ..... + ( 2 - 1 )( 2 + 1 )
= 199 + 197 + 195 + ..... + 5 + 3
= \(\frac{\left(199+3\right)\left(\left(199-3\right)\frac{1}{2}+1\right)}{2}\)
= 9999
d) 3 ( 22 + 1 )( 24 +1 )......( 264 + 1 ) + 1
= ( 22 -1 )( 22 + 1 )(24 + 1 ).....( 264 + 1 ) + 1
= ( 24 -1 )( 24 + 1 )( 28 + 1 )......( 264 + 1 ) +1
= ( 28 -1 )( 28 + 1).....( 264 + 1) +1
............
= ( 264 - 1)( 264 +1 ) + 1
= 2128
a) \(A=\frac{1}{y-1}-\frac{y}{1-y^2}\left(y\ne\pm1\right)\)
\(\Leftrightarrow A=\frac{1}{y-1}+\frac{y}{\left(y-1\right)\left(y+1\right)}=\frac{y+1}{\left(y-1\right)\left(y+1\right)}+\frac{y}{\left(y-1\right)\left(y+1\right)}=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\)
Thay y=2 (tm) vao A ta co:
\(A=\frac{2\cdot2+1}{\left(2-1\right)\left(2+1\right)}=\frac{5}{3}\)
Vay \(A=\frac{5}{3}\)voi y=2
b) Ta co: \(\hept{\begin{cases}A=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\left(y\ne\pm1\right)\\B=\frac{y^2-y}{2y+1}=\frac{y\left(y-1\right)}{2y+1}\left(y\ne\frac{-1}{2}\right)\end{cases}}\)
\(\Rightarrow M=\frac{2y+1}{\left(y-1\right)\left(y+1\right)}\cdot\frac{y\left(y-1\right)}{2y+1}=\frac{\left(2y+1\right)\cdot y\cdot\left(y-1\right)}{\left(y-1\right)\left(y+1\right)\left(2y+1\right)}=\frac{y}{y+1}\)
a)
\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=100+99+98+97+...+2+1\)
\(A=\frac{100.101}{2}=5050\)
b)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)
\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(B=2^{128}-1+1=2^{128}\)
c)
\(C=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2ac-2bc-2a^2-4ab-2b^2\)
\(C=2c^2\)
\(L=100^2-99^2+98^2-97^2+..............+2^2-1^2\)
\(=\left(100^2-99^2\right)+\left(98^2-97^2\right)+............+\left(2^2-1^2\right)\)
\(=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+............+\left(2+1\right)\left(2-1\right)\)
\(=199+195+191+..........+3\)
\(=5050\)
a, A = 1002 - 992 + 982 - 972 +...+ 22 - 12
A = (1002 - 992) + (982 - 972) +...+ (22 - 1)2
A = (100 - 99)(100+99) + (98-97)(98+97)+..+(2-1)(2+1)
A = 1.199 + 1.195 + 1.191 +...+1.3
A = 3 + ...+191+ 195 + 199
Dãy số trên là dãy số cách đều với khoảng cách là: 199 -195=4
Dãy số trên có số hạng là: (199 - 3): 4 + 1 = 50 (số )
A = (199 +3) \(\times\) 50 : 2 = 5050