K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

x2+2(m-1)x+m2+1=0 (*) Để phương trình (*) có 2 nghiệm phân biệt khi: \(\Delta>0\) hay \(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Leftrightarrow m<0\left(I\right)\)

Theo giả thiết giả sử ta có: \(x_1>1,x_2<1\Rightarrow\left(x_1-1\right)\left(x_2-1\right)<0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\) 

Theo Vi-et ta có: \(x_1x_2=m^2+1;x_1+x_2=-2\left(m-1\right)\) Thay vào (II) Ta có: \(m^2+1+2\left(m-1\right)+1<0\Leftrightarrow m\left(m+2\right)<0\)
Hay -2<m<0 Thỏa mãn cả (I).
Vậy -2<m<0 Thì phương trình (*) thỏa mãn điều kiện bài ra

22 tháng 11 2016

áp dụng là ra ngay

27 tháng 4 2016

vi-ét nhé

28 tháng 4 2016

Để phương trình x2+2(m-1)x+m2+1=0 (*) có 2 nghiệm phân biệt ta có:
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Rightarrow m<0\left(I\right)\) Để phương trình có một nghiệm lớn hơn một, và một nghiệm kia nhỏ hơn một. 
Giả sử \(x_1>1,x_2<1\) Ta có \(\left(x_1-1\right)\left(x_2-1\right)<0\) nhân ra ta có \(x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\) Theo Viet ta có:
\(x_1x_2=m^2+1\) Và \(x_1+x_2=2\left(1-m\right)\) Thay vào \(\left(II\right)\) ta có: \(m^2+1+2\left(m-1\right)+1<0\) Vậy ta có:
\(m\left(m+2\right)<0\) nghiệm của bất phương trình là:  -2<m<0 thỏa mãn (I). Vậy  -2<m<0 thì phương trình (*) thỏa mãn điều kiện đề bài.

AH
Akai Haruma
Giáo viên
28 tháng 4 2018

Lời giải:

Ta thấy:

\(\Delta'=(m-1)^2+(m+1)\)

\(m^2-m+2=(m-\frac{1}{2})^2+\frac{7}{4}>0,\forall m\in\mathbb{R}\) nên phương trình luôn có hai nghiệm phân biệt với mọi $m$
Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=-2(m-1)\\ x_1x_2=-(m+1)\end{matrix}\right.\)

a)

Pt có một nghiệm nhỏ hớn 1 và một nghiệm lớn hơn 1 khi và chỉ khi:

\((x_1-1)(x_2-1)< 0\)

\(\Leftrightarrow x_1x_2-(x_1+x_2)+1< 0\)

\(\Leftrightarrow -(m+1)+2(m-1)+1< 0\)

\(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)

Vậy $m< 2$

b)
PT có hai nghiệm đều nhỏ hơn $2$ khi mà:

\(\left\{\begin{matrix} (x_1-2)(x_2-2)> 0\\ x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2< 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(m+1)+4(m-1)+4>0\\ -2(m-1)< 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 3m-1>0\\ 2m+2>0\end{matrix}\right.\Leftrightarrow m> \frac{1}{3}\)

19 tháng 5 2018

hay thâtvuilolangbanhquahihaleuoho

1 tháng 4 2019

b) 

+) Với m=0 , phương trình (1) trở thành -x+1=0 <=> x=1

+) Với m khác 0 , (1) là phương trình bậc nhất một ẩn

Xét \(\Delta=\left(2m+1\right)^2-4.m\left(m+1\right)=4m^2+4m+1-4m^2-4m=1>0\)

=> m khác 0 phương trình (1) có hai ngiệm phân biệt

Vậy pt (1) luôn có nghiệm với mọi giá trị của m

c)  Với m =0 phương trình (1) có nghiệm bằng 1< 2 loại

Với m khác 0 

Gọi \(x_1,x_2\)là hai nghiệm phân biệt của phương trình (1)

Khi đó áp dụng định lí Vi-et:

\(\hept{\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1.x_2=m+1\end{cases}}\)

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Câu 1:

Trước hết để pt có 2 nghiệm (phân biệt) thì:

\(\Delta'=6^2-2(2m-1)>0\)

\(\Leftrightarrow m< \frac{19}{2}\)

Khi đó, với $x_1,x_2$ là 2 nghiệm của pt, áp dụng định lý Vi-et ta có: \(x_1+x_2=6\)

Nếu PT có 2 nghiệm đều nhỏ hơn $1$ thì $x_1+x_2<2$ (mâu thuẫn với điều trên)

Do đó không tồn tại $m$ để pt có 2 nghiệm đều nhỏ hơn $1$

AH
Akai Haruma
Giáo viên
26 tháng 2 2019

Câu 2:

Trước tiên để pt có 2 nghiệm phân biệt thì:

\(\Delta=5^2-4(m+4)>0\)

\(\Leftrightarrow m< \frac{9}{4}\)

Khi đó, áp dụng định lý Vi-et ta có:\(\left\{\begin{matrix} x_1+x_2=5\\ x_1x_2=m+4\end{matrix}\right.\)

a)

\(3=|x_1-x_2|=\sqrt{(x_1-x_2)^2}\)

\(\Leftrightarrow 3=\sqrt{x_1^2-2x_1x_2+x_2^2}\)

\(\Leftrightarrow 3=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{25-4(m+4)}\)

\(\Leftrightarrow 25-4(m+4)=9\Leftrightarrow m=0\) (thỏa mãn)

b)

\(|x_1|+|x_2|=4\)

\(\Leftrightarrow |5-x_2|+|x_2|=4\)

Ta luôn có BĐT \(4=|5-x_2|+|x_2|\geq |5-x_2+x_2|=5\Rightarrow 4\geq 5\) (vô lý)

Do đó không tồn tại $m$ thỏa mãn điều kiện đã cho.