Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+2(m-1)x+m2+1=0 (*) Để phương trình (*) có 2 nghiệm phân biệt khi: \(\Delta>0\) hay \(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Leftrightarrow m<0\left(I\right)\)
Theo giả thiết giả sử ta có: \(x_1>1,x_2<1\Rightarrow\left(x_1-1\right)\left(x_2-1\right)<0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\)
Theo Vi-et ta có: \(x_1x_2=m^2+1;x_1+x_2=-2\left(m-1\right)\) Thay vào (II) Ta có: \(m^2+1+2\left(m-1\right)+1<0\Leftrightarrow m\left(m+2\right)<0\)
Hay -2<m<0 Thỏa mãn cả (I).
Vậy -2<m<0 Thì phương trình (*) thỏa mãn điều kiện bài ra
a, bn chỉ cần thay m =-2 vào pt là đc
b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0
m^2+3m+4=0
m=-1 và m=-4
với m=-1 thì x=2 với m=-4 thì vo nghiệm
vậy nghiệm còn lại là 2
c bn sd đen ta ' là đc
d - bn viết hệ thức viet
x1^2+x2^2=8
(X1+x2)^2-2x1.x2=8
- thay viet vào
1) vì pt có 1 nghiệm x = 2 nên
\(2^2-2\left(m+1\right).2+m-4=0\)
\(\Leftrightarrow4-4m-4+m-4=0\)
\(\Leftrightarrow-3m=4\)
\(\Leftrightarrow m=-\frac{4}{3}\)
Thay \(m=-\frac{4}{3}\)vào pt đã cho ta đc
\(x^2-2\left(-\frac{4}{3}+1\right)x-\frac{4}{3}-4=0\)
\(\Leftrightarrow x^2+\frac{2x}{3}-\frac{16}{3}=0\)
\(\Leftrightarrow3x^2+2x-16=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{3}\end{cases}}\)
Vậy nghiệm còn lại của pt là \(x=-\frac{8}{3}\)
2) Có \(\Delta'=\left(m+1\right)^2-m+4\)
\(=m^2+2m+1-m+4\)
\(=m^2+m+5\)
\(=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall m\)
=> Pt luôn có 2 nghiệm phân biệt với mọi m
3) Theo hệ thức Vi-et có
\(x_1+x_2=\frac{-b}{a}=\frac{2\left(m+1\right)}{1}=2m+2\)
\(x_1.x_2=\frac{c}{a}=\frac{m-4}{1}=m-4\)
a,Ta có: \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1-x_1x_2+x_2-x_1x_2\)
\(=\left(x_1+x_2\right)-2x_1x_2\)
\(=2m+2-2\left(m-4\right)\)
\(=2m+2-2m+8\)
\(=10\)ko phụ thuộc vào giá trị của m
b, Từ \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1+2x_2=3\end{cases}}\)
\(\Rightarrow\left(x_1+2x_2\right)-\left(x_1+x_2\right)=1-2m\)
\(\Rightarrow x_2=1-2m\)
Thế vào (1) ta đc \(x_1+1-2m=2m+2\)
\(\Leftrightarrow x_1=4m+1\)
Lại có: \(x_1x_2=m-4\)
\(\Leftrightarrow\left(4m+1\right)\left(1-2m\right)=m-4\)
\(\Leftrightarrow4m-8m^2+1-2m=m-4\)
\(\Leftrightarrow8m^2-m-5=0\)
\(\Delta=1-4.8.\left(-5\right)=161>0\)
Nên pt có 2 nghiệm phân biệt
\(m_1=\frac{1-\sqrt{161}}{16}\)
\(m_2=\frac{1+\sqrt{161}}{16}\)
c, \(x_1+x_2\ge10x_1x_2+6m-5\)
\(\Leftrightarrow2m+2\ge10\left(m-4\right)+6m-5\)
\(\Leftrightarrow2m+2\ge10m-40+6m-5\)
\(\Leftrightarrow47\ge14m\)
\(\Leftrightarrow m\le\frac{47}{14}\)
Vậy ............
vi-ét nhé
Để phương trình x2+2(m-1)x+m2+1=0 (*) có 2 nghiệm phân biệt ta có:
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Rightarrow m<0\left(I\right)\) Để phương trình có một nghiệm lớn hơn một, và một nghiệm kia nhỏ hơn một.
Giả sử \(x_1>1,x_2<1\) Ta có \(\left(x_1-1\right)\left(x_2-1\right)<0\) nhân ra ta có \(x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\) Theo Viet ta có:
\(x_1x_2=m^2+1\) Và \(x_1+x_2=2\left(1-m\right)\) Thay vào \(\left(II\right)\) ta có: \(m^2+1+2\left(m-1\right)+1<0\) Vậy ta có:
\(m\left(m+2\right)<0\) nghiệm của bất phương trình là: -2<m<0 thỏa mãn (I). Vậy -2<m<0 thì phương trình (*) thỏa mãn điều kiện đề bài.