Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
a: \(\left(\dfrac{1}{7}x-\dfrac{2}{7}\right)\left(-\dfrac{1}{5}x+\dfrac{3}{5}\right)\left(\dfrac{1}{3}x+\dfrac{4}{3}\right)=0\)
=>\(\dfrac{1}{7}\left(x-2\right)\cdot\dfrac{-1}{5}\cdot\left(x-3\right)\cdot\dfrac{1}{3}\left(x+4\right)=0\)
=>(x-2)(x-3)(x+4)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-3=0\\x+4=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\\x=3\\x=-4\end{matrix}\right.\)
b: \(\dfrac{1}{6}x+\dfrac{1}{10}x-\dfrac{4}{15}x+1=0\)
=>\(x\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right)=1\)
=>\(x\cdot\dfrac{5+3-8}{30}=1\)
=>x*0=1(vô lý)
=>\(x\in\varnothing\)
c: \(\dfrac{3}{7}\left(x-\dfrac{14}{9}\right)=-\dfrac{11}{7}\left(x+\dfrac{14}{11}\right)\)
=>\(\dfrac{3}{7}x-\dfrac{42}{63}=-\dfrac{11}{7}x-\dfrac{14}{7}\)
=>\(2x=-\dfrac{14}{7}+\dfrac{42}{63}=-2+\dfrac{2}{3}=-\dfrac{4}{3}\)
=>\(x=-\dfrac{2}{3}\)