K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2018

a ) 

\(x^2y+x^2+xy+xy^2+xy+y^2\)

\(=\left(x^2y+xy^2\right)+\left(x^2+2xy+y^2\right)\)

\(=xy\left(x+y\right)+\left(x+y\right)^2\)

\(=\left(x+y\right)\left(xy+1\right)\)

b ) 

\(x^2+xy+x+xy+y+y^2\)

\(=\left(x^2+2xy+y^2\right)+\left(x+y\right)\)

\(=\left(x+y\right)^2+\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+1\right)\)

c ) 

\(x^2+y^2+z^2+2z\left(x+y\right)+2xy\)

\(=\left(x^2+2xy+y^2\right)+z^2+2z\left(x+y\right)\)

\(=\left(x+y\right)^2+z^2+2z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+2z\right)+z^2\)

5 tháng 8 2018

Phân tích đa thức thành nhân tử ( phối hợp các phương pháp )

1) x2 - ( a + b )xy + aby2

\(=x^2-axy-bxy+aby^2\)

\(=(x^2-axy)-(bxy+aby^2)\)

\(=x(x-ay)-by(x+ay)\)

\(=(x-ay)(x-by)\)

5 tháng 8 2018

2) x2 + ( 2a + b )xy + 2aby2

=x2 + 2axy + bxy + 2aby2

=(x2+ bxy) +(2axy+ 2aby2 )

=x(x+ by) +2ay(x+ by)

=(x+ by)(x+2ay)

10 tháng 1 2019

Sửa đề

\(2A=2x^2+2y^2+2xy-2x+2y+2\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

\(\Rightarrow A_{min}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

10 tháng 1 2019

\(x^2y+xy^2+x+y=xy\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(xy+1\right)=12\left(x+y\right)=2010\)

\(\Rightarrow x+y=\dfrac{2010}{12}\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\left(\dfrac{2010}{12}\right)^2-2\cdot11=\dfrac{112137}{4}\)

15 tháng 8 2017

a, x2 + (a +b) xy + aby2

=\(x\left(x+ay\right)+by\left(x+ay\right)\)

=\(\left(x+ay\right)\left(x+by\right)\)

15 tháng 8 2017

https://hoc24.vn/hoi-dap/question/418773.html

15 tháng 8 2017

a) \(x^2+\left(a+b\right)xy+aby^2\)

\(=x^2+axy+bxy+aby^2\)

\(=x\left(x+ay\right)+by\left(x+ay\right)\)

\(=\left(x+ay\right)\left(x+by\right)\)

b) \(a^2-\left(c+d\right)ab+cdb^2\)

\(=a^2-abc-abd+cdb^2\)

\(=a\left(a-bc\right)-bd\left(a-bc\right)\)

\(=\left(a-bc\right)\left(a-bd\right)\)

c) Sửa đề: \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)

\(=abx^2+aby^2+a^2xy+b^2xy\)

\(=abx^2+b^2xy+a^2xy+aby^2\)

\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)

\(=\left(ax+by\right)\left(bx+ay\right)\)

d) Sửa đề: \(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)

\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2abxy+b^2x^2\)

\(=x^2y^2+a^2y^2+a^2b^2+b^2x^2\)

\(=y^2\left(x^2+a^2\right)+b^2\left(x^2+a^2\right)\)

\(=\left(x^2+a^2\right)\left(y^2+b^2\right)\)