K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Sửa đề

\(2A=2x^2+2y^2+2xy-2x+2y+2\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)

\(\Rightarrow A_{min}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

10 tháng 1 2019

\(x^2y+xy^2+x+y=xy\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(xy+1\right)=12\left(x+y\right)=2010\)

\(\Rightarrow x+y=\dfrac{2010}{12}\)

\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\left(\dfrac{2010}{12}\right)^2-2\cdot11=\dfrac{112137}{4}\)

11 tháng 5 2016

Biết xy=11 và x2y+xy2+x+y=2010.Tính x2+y2

ta có:x2y+xy2+x+y=2010

<=>xy(x+y)+x+y=2010

<=>(x+y)(xy+1)=2010

<=>x+y=167,5

<=>(x+y)2=x2+y2+2xy=28056,25

<=>x2+y2=28056,25-22=28034,25

23 tháng 1 2016

\(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+x+y=2010\)

\(\Leftrightarrow\left(x+y\right)\left(xy+1\right)=2010\)

\(\Leftrightarrow\left(x+y\right)\left(11+1\right)=2010\)

\(\Leftrightarrow x+y=\frac{2010}{11+1}=\frac{332}{5}\)

Ta có  \(x^2+y^2=\left(x+y\right)^2-2xy=\left(\frac{332}{5}\right)^2-2.11=\frac{112137}{4}\)

23 tháng 12 2016

a ) x ^ 2 + 2xy + 7x + 7y + y ^2 + 10 = ( x + y ) ^2 + 7  ( x + y ) + 10 = ( x + y ) ( x + y + 17 )

23 tháng 12 2016

bạn ơi còn phần b

23 tháng 10 2017

Theo bài ra ta có:

\(x^2y+xy^2+x+y=2010\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Rightarrow\left(x+y\right)\left(xy+1\right)=2010\)

\(\Rightarrow\left(x+y\right)\left(11+1\right)=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=2010\div12=167,5\)

Ta có: \(A=x^4+y^4=\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2-2x^2y^2\)

\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2-2\times11^2\)

\(\Rightarrow\left[\left(167,5\right)^2-2.11\right]^2-245\)

\(\Rightarrow\left(28056,25-22\right)^2-245=785918928,0625\)

6 tháng 7 2017

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Rightarrow x=y=z\)

Ta lại có : \(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

\(\Rightarrow3x^{2009}=3^{2010}\Rightarrow x^{2009}=3^{2009}\Rightarrow x=3\)

\(\Rightarrow x=y=z=3\)

Vậy .............

25 tháng 8 2020

a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)

\(A=xy\left(x+y\right)+\left(y-x\right)\)

\(A=\left(-5\right).2\left(-5+2\right)+2+5\)

\(A=30+7=37\)

b) \(B=3x^3-2y^3-6x^2y^2+xy\)

\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)

\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)

\(B=\frac{11}{36}\)

c) \(C=2x+xy^2-x^2y-2y\)

\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)

\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)

\(C=-\frac{11}{36}\)