Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{10}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\frac{1}{100}\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot0\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)=0
\(\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).\left(\frac{1}{100}-\left(\frac{1}{2}\right)^2\right)......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)....\left(\frac{1}{100}-\left(\frac{1}{10}\right)^2\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)...\left(\frac{1}{100}-\frac{1}{100}\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).....0......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=0\)
\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):....:\left(\frac{1}{100}-1\right)\text{ có số số lẻ thừa số âm nên bằng:}\)
\(-\left[\left(1-\frac{1}{2}\right):\left(1-\frac{1}{3}\right):...\left(1-\frac{1}{100}\right)\right]=-\left[\frac{1}{2}:\frac{2}{3}:\frac{3}{4}:......:\frac{99}{100}\right]=-\left(\frac{1.3.4...100}{2.2.3...99}\right)=-50\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)..........\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.........\frac{100}{99}\)
\(=\frac{100}{2}=50\)
\(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).........\left(\frac{1}{100}-1\right)\)
\(=-\frac{1}{2}.-\frac{2}{3}..........-\frac{99}{100}\)
\(=\frac{-1}{100}\)
\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)......\left(\frac{1}{99}+1\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(=\frac{3.4.5.....100}{2.3.4.....99}\)
\(=\frac{100}{2}=50\)