Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Sn = 1+2+3+4+...+n (1)
=> Sn= n+(n-1)+...+2+1 (2)
Thấy 1+n = 2+(n-1) = 3+(n-2) = n-1+2=n+1
Lấy (1);(2) và chú ý trên ta có:
2.Sn = (n+1)+(n+1)+(n+1)+...+(n+1)=n(n+1) (vì n số hạng giống nhau)
=> Sn= n(n+1)/2 => Sn/n = (n+1)/2
=> P= 1+ S2/2 + S3/3 + S4/4 +...+ Sn/n
P= 1+3/2+4/2+5/2+...+(n+1)/2
P= 2(2+3+4+...+n+n+1) = 2(1+2+...n+n+1) - 2 = 2.S(n+1) - 2
P= 2.(n+1)(n+2)/2 -2 = (n+1)(n+2) -2 = n2+3n
Bài toán chỉ đến S2016/2016 (tức n=2016)
Vậy S= 20162+3.2016=2016.(2016+3)=2016.2019=4070304
E = 1 + 1/2.(1 + 2) + 1/3.(1 + 2 + 3) + 1/4.(1 + 2 + 3 + 4) + ... + 2016.(1 + 2 + 3 + ... + 2016)
E = 1 + 1/2.(1 + 2).2:2 + 1/3.(1 + 3).3:2 + 1/4.(1 + 4).4:2 + ... + 2016.(1 + 2016).2016:2
E = 2/2 + 3/2 + 4/2 + 5/2 + ... + 2017/2
E = 2+3+4+5+...+2017/2
E = (2 + 2017).2016/2
E = 2019.1008
E = 2 035 152
a)Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
\(=\left(\frac{1}{2.2}-1\right)\left(\frac{1}{3.3}-1\right)\left(\frac{1}{4.4}-1\right)....\left(\frac{1}{98.98}-1\right)\left(\frac{1}{99.99}-1\right)\)
\(=\left(-\frac{3}{2.2}\right).\left(-\frac{8}{3.3}\right).\left(-\frac{15}{4.4}\right)...\left(-\frac{9603}{98.98}\right).\left(-\frac{9800}{99.99}\right)\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)\right].\frac{3}{2.2}.\frac{8}{3.3}.\frac{15}{4.4}...\frac{9603}{98.98}.\frac{9800}{99.99}\)
|------------------------98 số -1--------------------|
\(=\left(-1\right)^{98}.\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3.2.4.3.5...95.97.98.100}{2.2.3.3.4.4...98.98.99.99}\)
Ta sẽ rút gọn các thừa số chung ở tử và mẫu
\(=\frac{1.100}{2.99.99}\)
\(=\frac{50}{9801}\)
Vậy \(A=\frac{50}{9801}\)
cho mik hỏi bước 3 chỗ \(\frac{3}{2.2}\)sai o duoi lai la\(\frac{3}{2.3}\)vay
Câu 2:
25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04
= 20,04(25 + 75 - 2003 + 2004)
= 20,04.101 = 2024,04
C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)
\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)
mấy câu kia mình lười làm lắm bạn
Chúc bạn học tốt!^_^
A.2=2 +2^2+2^3+...+2^6
b,A.2-A=(2+2^2+2^3+...+2^6)-(1+2+2^2+...+2^5)
A=2^6-1
a,
\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)
\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)
Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)
b,
Ta có:
3301 > 3300 = [33]100 = 27100
5199 < 5200 = [52]100 = 25100
Mà 27100 > 25100 => 3301 > 5199
c,
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
Vậy P < 1
\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)
\(5^{\frac{199}{301}}< 3^1\)
\(\Leftrightarrow5^{199}< 3^{301}\)
Hình như câu 2 bạn viết bị sai đề
Đáng lẽ phải là:
S = 1+3+32+33+34+...+330
Thế mới đúng chứ!
Mình giải cho
Giải:
S = 1+3+32+33+34+...+330
3S = 3 ( 1+3+32+33+34+...+330)
= 3+32+33+34+...+330+331
3S - S = (3+32+33+34+...+330+331) - (1+3+32+33+34+...+330)
2S = 331- 1 = ...7 - 1 = ...6
Vì S có chữ số tận cùng là 6 nên S là số chính phương