Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A.2=2 +2^2+2^3+...+2^6
b,A.2-A=(2+2^2+2^3+...+2^6)-(1+2+2^2+...+2^5)
A=2^6-1
a/ \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)
= \(-\frac{9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(-\frac{9}{10}.\frac{1}{2}+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(\frac{-9}{20}+\left(-\frac{9}{20}\right)=\frac{-18}{20}=\frac{-9}{10}\)
b/ \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right).132\)
\(=\left(\frac{1}{2}.132\right)+\left(\frac{1}{3}.132\right)+\left(\frac{1}{4}.132\right)+\left(\frac{1}{6}.132\right)\)\(+\left(\frac{1}{11}.132\right)\)
\(=66+44+33+22+12=177\)
c/ \(-\frac{2}{3}.\left(\frac{8}{9}.\frac{8}{13}-\frac{8}{27}.\frac{8}{13}+\frac{4}{3}.\frac{22}{39}\right)\)
= \(-\frac{2}{3}.\left[\frac{8}{13}\left(\frac{8}{9}-\frac{8}{27}\right)+\frac{88}{117}\right]\)
= \(-\frac{2}{3}.\left(\frac{8}{13}.\frac{16}{27}+\frac{88}{117}\right)\)
= còn lại làm nốt nha! bận ròy
1.
a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)
c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)
d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)
e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)
Trả lời:
Bài 1:
a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)
b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)
c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)
d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)
e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)
Bài 2:
a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)
b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)
d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)
e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)
f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)
a)Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
\(=\left(\frac{1}{2.2}-1\right)\left(\frac{1}{3.3}-1\right)\left(\frac{1}{4.4}-1\right)....\left(\frac{1}{98.98}-1\right)\left(\frac{1}{99.99}-1\right)\)
\(=\left(-\frac{3}{2.2}\right).\left(-\frac{8}{3.3}\right).\left(-\frac{15}{4.4}\right)...\left(-\frac{9603}{98.98}\right).\left(-\frac{9800}{99.99}\right)\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)\right].\frac{3}{2.2}.\frac{8}{3.3}.\frac{15}{4.4}...\frac{9603}{98.98}.\frac{9800}{99.99}\)
|------------------------98 số -1--------------------|
\(=\left(-1\right)^{98}.\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3.2.4.3.5...95.97.98.100}{2.2.3.3.4.4...98.98.99.99}\)
Ta sẽ rút gọn các thừa số chung ở tử và mẫu
\(=\frac{1.100}{2.99.99}\)
\(=\frac{50}{9801}\)
Vậy \(A=\frac{50}{9801}\)
cho mik hỏi bước 3 chỗ \(\frac{3}{2.2}\)sai o duoi lai la\(\frac{3}{2.3}\)vay