K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

mình chỉ biết tinh A thôi.

A=2A-A

2A=\(2^2+2^3+2^4+...+2^{61}\)

=>A=\(2^{61}-2\)

6 tháng 6 2020

Thằng ngu

31 tháng 3 2016

A.2=2 +2^2+2^3+...+2^6

b,A.2-A=(2+2^2+2^3+...+2^6)-(1+2+2^2+...+2^5)

A=2^6-1

9 tháng 7 2021

1. 

a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)

c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)

d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)

e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)

10 tháng 7 2021

Trả lời:

Bài 1: 

a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)

b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)

c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)

d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)

e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)

Bài 2:

a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)

b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)

d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)

f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)

13 tháng 4 2017

Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:

a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).

Thay vào điều kiện ta được:

 qa1b = qc1d

\(\Leftrightarrow\)a1b = c1d

\(\Rightarrow\)  d\(⋮\)a1

\(\Rightarrow\)d = d1a1

Thế ngược lại ta được: b = d1c1

Từ đây ta có:

A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n

= (a​1 n + c1 n)(q n + d1 n)

Vậy A là hợp số

13 tháng 4 2017

\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)

\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)

\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)

\(D< 4+2.\left(1-\frac{1}{2015}\right)\)

\(D< 6\)

mink chỉ làm được vậy thôi bạn ạ, sorry

14 tháng 4 2019

\(2.THPT\)

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9\left(1-\frac{1}{100}\right)\)

\(A=9.\frac{99}{100}\)

\(A=\frac{891}{100}\)

\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)

\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)

\(B=\frac{1}{5}-\frac{1}{95}\)

\(B=\frac{18}{95}\)

\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)

\(D=\frac{1}{2}-\frac{1}{28}\)

\(D=\frac{13}{28}\)