Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1^2+2^2+3^2+...+n^2=1.1+2.2+3.3+...+n.n\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+n\left(n+1-1\right)\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n\)
\(=\left(1.2+2.3+3.4+...+n\left(n+1\right)\right)-\left(1+2+3+...+n\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)-0.1.2}{3}-\frac{n\left(n+1\right)}{2}\)
=...
a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)
+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng
=> (@@) đúng với n = 1
+) G/s (@@) đúng cho đến n
+) Ta chứng minh (@@ ) đúng với n + 1
Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)
\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)
=> (@@) đúng với n + 1
Vậy (@@ ) đúng với mọi số tự nhiên n khác 0
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)
Ta chứng minh (@) đúng với n là số tự nhiên khác 0 quy nạp theo n
+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng
=> (@) đúng với n = 1
+) G/s (@) đúng cho đến n
+) Ta cần chứng minh (@) đúng với n + 1
Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)
=> (@) đúng với n + 1
Vậy (@) đúng với mọi số tự nhiên n khác 0.
Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:
a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).
Thay vào điều kiện ta được:
qa1b = qc1d
\(\Leftrightarrow\)a1b = c1d
\(\Rightarrow\) d\(⋮\)a1
\(\Rightarrow\)d = d1a1
Thế ngược lại ta được: b = d1c1
Từ đây ta có:
A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n
= (a1 n + c1 n)(q n + d1 n)
Vậy A là hợp số
\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)
\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)
\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)
\(D< 4+2.\left(1-\frac{1}{2015}\right)\)
\(D< 6\)
mink chỉ làm được vậy thôi bạn ạ, sorry
mình chỉ biết tinh A thôi.
A=2A-A
2A=\(2^2+2^3+2^4+...+2^{61}\)
=>A=\(2^{61}-2\)
\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)
\(\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)