K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mik làm trước câu b nha

Do \(\left(x-1\right)^4\ge0\)

\(\left(x-3\right)^4\ge0\)

\(6\left(x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)\left(x-3\right)\ge0\)

\(MinA=0\)

8 tháng 8 2016

ừ hi :)) thanks bạn

14 tháng 6 2017

x4-30x2+31x-30=0

 x4+x) -30x2+30x-30=0

x{x3+1} -30{ x2-x+1}=0

x{x+1}{x2-x+1}-30{x2-x+1}=0

{x2-x+1}{x2+x-30}=0

x2+x-30=0 {vi x2-x+1>0}

x2+x-30x-30=0

{x+1}{x-30}=0

  • x=-1
  • x=30
4 tháng 3 2018

Bài 1: (Mình vẫn ko hiểu lắm là phải làm ntn nên sẽ làm 2 cách)

a) \(-30x^2+30x-7,5=0\)

C1: Ta có: \(a=-30\) ; \(b=30\) ; \(c=-7,5\)

\(\Rightarrow\) \(\Delta=b^2-4ac=30^2-4.\left(-30\right).\left(-7,5\right)\)

\(\Delta=1012>0\) (lấy gần bằng nhưng vì \(\Delta\) ko có giá trị gần bằng nên chỉ ghi là "=" thôi)

\(\Rightarrow\)\(\sqrt{\Delta}=\sqrt{1012}=2\sqrt{253}\)

Vậy p/t đã cho có 2 nghiệm phân biệt là:

\(x_1=\frac{b^2-\sqrt{\Delta}}{2a}=\frac{\left(-30\right)^2-2\sqrt{253}}{2.\left(-30\right)}\approx-14,47\)

\(x_2=\dfrac{b^2+\sqrt{\Delta}}{2a}=\dfrac{\left(-30\right)^2+2\sqrt{253}}{2.\left(-30\right)}\approx-15.53\)

C2: Ta có: \(a=30\) ; \(b'=-15\) ; \(c=7,5\)

\(\Rightarrow\) \(\Delta'=b'^2-ac=\left(-15\right)-30.7,5\)

\(\Delta=0\)

Vậy p/t đã cho có nghiệm kép:

\(x_1=x_2=-\dfrac{b'}{a}=-\dfrac{\left(-15\right)}{30}=\dfrac{1}{2}=0,5\)

b) (Tương tự)

Bài 2:

\(x^2-2\left(m+2\right)x+m^2-12=0\)

a) Tại \(m=-4\) thì:

\(x^2-2\left(-4+2\right)x+\left(-4\right)^2-12=0\)

\(\Leftrightarrow\) \(x^2-2.\left(-2\right)x+\left(-4\right)^2-12=0\)

\(\Leftrightarrow\) \(x^2+4x+16-12=0\)

\(\Leftrightarrow\) \(x^2+4x+4=0\)

\(\Leftrightarrow\) \(\left(x+2\right)^2=0\)

\(\Leftrightarrow\) \(x+2=0\)

\(\Leftrightarrow\) \(x=-2\)

17 tháng 9 2015

đề sai sao ý, cái căn thứ 2

\(ĐK:x\ge0\)

\(PT\Leftrightarrow x^2+x+1+2x\sqrt{x}+2\sqrt{x}+2x=2x^2-30x+2\)

\(\Leftrightarrow x^2-33x+1-2x\sqrt{x}-2\sqrt{x}=0\left(1\right)\)

Đặt \(\sqrt{x}=a\left(a\ge0\right)\)

\(\left(1\right)\Leftrightarrow a^4-33a^2+1-2a^3-2a=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7\pm3\sqrt{5}}{2}\\x=\frac{-5\pm\sqrt{21}}{2}\end{cases}}\)

23 tháng 3 2020

\(15x^4+30x^3+13x^2-2x-1=0\)

<=> \(15x^4+15x^3+15x^3+15x^2-2x^2-2x-1=0\)

<=> \(15x^2\left(x^2+x\right)+15x\left(x^2+x\right)-2\left(x^2+x\right)-1\)

<=> \(15\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0\)

<=> \(\orbr{\begin{cases}x^2+x=\frac{1}{3}\\x^2+x=\frac{1}{5}\end{cases}}\)

Em tự giải tiếp nhé!

NV
19 tháng 10 2019

1/

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=-3\end{matrix}\right.\)

2/ \(P=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(3-5x\right)^2}\)

\(P=\left|5x-2\right|+\left|3-5x\right|\ge\left|5x-2+3-5x\right|=1\)

\(\Rightarrow P_{min}=1\) khi \(\frac{2}{5}\le x\le\frac{3}{5}\)

3/ ĐKXĐ: \(\left|x\right|\ge1\)

\(x^2-1-\sqrt{x^2-1}=0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2-1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)

10 tháng 8 2017

post ít một thôi bn

11 tháng 8 2017

hic hic, thì bn chỉ cần tl 1 câu thui là tốt lắm r mà