K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

\(15x^4+30x^3+13x^2-2x-1=0\)

<=> \(15x^4+15x^3+15x^3+15x^2-2x^2-2x-1=0\)

<=> \(15x^2\left(x^2+x\right)+15x\left(x^2+x\right)-2\left(x^2+x\right)-1\)

<=> \(15\left(x^2+x\right)^2-2\left(x^2+x\right)-1=0\)

<=> \(\orbr{\begin{cases}x^2+x=\frac{1}{3}\\x^2+x=\frac{1}{5}\end{cases}}\)

Em tự giải tiếp nhé!

20 tháng 3 2021

2x3 - 15x2 + 26x - 5 = 0

<=> 2x3 - 10x2 - 5x2 + 25x + x - 5 = 0

<=> 2x2( x - 5 ) - 5x( x - 5 ) + ( x - 5 ) = 0

<=> ( x - 5 )( 2x2 - 5x + 1 ) = 0

<=> \(\orbr{\begin{cases}x-5=0\\2x^2-5x+1=0\end{cases}}\)

+) x - 5 = 0 <=> x = 5

+) 2x2 - 5x + 1 = 0

Δ = b2 - 4ac = (-5)2 - 4.2.1 = 25 - 8 = 17

Δ > 0, áp dụng công thức nghiệm thu được \(x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4}\)

Vậy phương trình đã cho có ba nghiệm \(x_1=\frac{5+\sqrt{17}}{4};x_2=\frac{5-\sqrt{17}}{4};x_3=5\)

16 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

14 tháng 6 2017

x4-30x2+31x-30=0

 x4+x) -30x2+30x-30=0

x{x3+1} -30{ x2-x+1}=0

x{x+1}{x2-x+1}-30{x2-x+1}=0

{x2-x+1}{x2+x-30}=0

x2+x-30=0 {vi x2-x+1>0}

x2+x-30x-30=0

{x+1}{x-30}=0

  • x=-1
  • x=30
18 tháng 10 2016

\(x^2-15x-6\sqrt{x-1}+74=0\)

\(\Leftrightarrow\left(\left(x-1\right)-6\sqrt{x-1}+9\right)+\left(x^2-16x+64\right)+2=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-3\right)^2+\left(x-8\right)^2+2=0\)

Ta có VT > 0; VP = 0 nên pt vô nghiệm

15 tháng 7 2017

Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.

b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)

Dấu = xảy ra khi \(x=2\)

c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)

\(\le1+\sqrt{3}\)

Dấu = không xảy ra nên pt vô nghiệm

Câu d làm tương tự

15 tháng 7 2017

\(a,\sqrt{x^2-4}-x^2+4=0\) 

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\) 

\(\Leftrightarrow x^2-4=\left(x-4\right)^2\) 

\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)  

\(\Leftrightarrow-x^4-7x^2-20=0\) 

\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\) 

\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\) 

\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\) 

\(\Rightarrow\)pt vô nghiệm

9 tháng 9 2015

1. phương trình tương đương với \(\left(x^2-7x+2\right)\left(x^2+2x+2\right)=0\to x=\frac{7}{2}\pm\frac{\sqrt{41}}{2}\)

2. phương trình tương đương với \(\left(x^2+\left(\sqrt{2}-1\right)x+1\right)\left(x^2+\left(\sqrt{2}+1\right)x-1\right)=0\to x=\frac{-1\pm\sqrt{2}\pm\sqrt{7-2\sqrt{2}}}{2}\) với dấu +,- lấy tuỳ ý

9 tháng 9 2015

Quan trọng là cách làm kìa. Chứ bấm máy là nghề của anh

18 tháng 4 2018

x(3x-1)-6x+2=0

27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}