K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

nhân 4 vào 2 vế,,,cm tuong đương

4a^2+4ab+4b^2=2(a+b)^2+2(a2+b2)

áp dụng 2(a^2+b^2)>=(a+b)^2

=> đpcm

20 tháng 7 2016

Đề đúng : CMR \(a^2+ab+b^2< 1\)

Ta có : Với mọi a > b > 0 thì \(a^3+b^3>a^3-b^3\)

\(\Rightarrow a-b>a^3-b^3\). Vì a - b > 0 , chia cả hai vế của bất đẳng thức cho (a-b) được : 

\(a^2+ab+b^2< 1\)(đpcm)

16 tháng 6 2016

a) Ta có:

(a + b)2 >= 0 => a2 + b2 >= -2ab

(a - 1)2 >= 0 => a2 + 1 >= 2a

(b - 1)2 >= 0 => b2 + 1 >= 2b

Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b

Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:

a2 + b2 + 1 > -ab + a + b      .đpcm.

b) a + b + c = 0 => a + b = -c => (a + b)3 = -c => a3 + 3a2b +3 ab2 + b3 = -c3

=> a3 + b3 + c3 = -3ab(a + b)   (*)

Mà a + b + c = 0 => a + b = -c 

=> (*) <=>  a3 + b3 + c3 = 3abc     .đpcm.

1 tháng 2 2020

a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5

=x^5-y^5=VP

=>dpcm

18 tháng 4 2020

Bài làm

a) Đặt a3 + b3 - ab2 - a2b = 0

<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0

<=> ( a + b )( a2 + ab + b2 - ab ) = 0

<=> ( a + b )( a2 + b2 ) = 0          (1) 

Mà a2 + b2 > 0 

=> ( a + b )( a2 + b2 ) > 0            (2) 

Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0 

Vậy a3 + b3 - ab2 - a2> 0 ( đpcm )

b) Đặt a5 + b5 - a4b - ab4 = 0

<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0

<=> a4( a - b ) + b4( b - a ) = 0

<=> a4( a - b ) - b4( a - b ) = 0 

<=> ( a - b )( a4 - b4 ) = 0              (1) 

Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0

=> ( a - b )( a4 - b4 ) < 0                (2) 

Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0

Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm ) 

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

13 tháng 4 2017

ta có: \(a^3+b^3-a^2b-ab^2>0\)*

\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)>0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)>0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>0\) (đúng)

\(\Rightarrow\) BĐT * luôn đúng

13 tháng 4 2017

Ta có: \(a^3+b^3>a^2b+ab^2\) (*)

<=> \(a^3-a^2b+b^3-ab^2>0\)

<=> \(a^2\left(a-b\right)+b^2\left(b-a\right)>0\)

<=> \(\left(a-b\right)\left(a^2-b^2\right)>0\)

<=> \(\left(a-b\right)^2\left(a+b\right)>0\) (1)

(1) đúng => (*) đúng

25 tháng 4 2018

Cách ngắn hơn ( nên làm cách này ) : 

Ta có : 

\(a>0\)

\(b>0\)

\(\Rightarrow\)\(ab>0\) \(\left(1\right)\)

Lại có : 

\(a^2\ge0\)

\(b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

Mà \(a>0\)\(;\)\(b>0\) nên dấu "=" không thể xảy ra 

\(\Rightarrow\)\(a^2+b^2>0\) \(\left(2\right)\)

Cộng theo vế (1) và (2) ta được : 

\(a^2+ab+b^2>0\) ( đpcm ) 

Vậy nếu \(a>0\)\(;\)\(b>0\) thì \(a^2+ab+b^2>0\)

Chúc bạn học tốt ~ 

24 tháng 4 2018

đề yêu cầu chứng minh cái gì vậy bạn?

24 tháng 3 2018

Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)

\(\Rightarrow a^2+b^2>2\left(đpcm\right)\)