Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân 4 vào 2 vế,,,cm tuong đương
4a^2+4ab+4b^2=2(a+b)^2+2(a2+b2)
áp dụng 2(a^2+b^2)>=(a+b)^2
=> đpcm
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
áp dụng bddt AM-GM cho 2 số dương :
a4 + b4 \(\ge\) 2a2b2 .........tương tự với b4 +c4, c4+a4
=> 2 ( a^4 + b^4 + c^4) >= 2(a^2b^2 + a^2c^2 +b^2c^2)=>.....
tương tự áp dụng bddt AM-GM
cho các cặp a2b2+b2c2 ; a2b2+c2a2 ;b2c2+c2a2
suy ra : a2b2+b2c2+c2a2\(\ge\) abc(a+b+c) (dpcm)
Áp dụng bất đẳng thức AM-GM ta có :
\(b^2+c^2\ge2\sqrt{b^2c^2}=2\sqrt{\left(bc\right)^2}=2\left|bc\right|=2bc\)( b,c > 0 )
=> a( b2 + c2 ) ≥ 2abc
Tương tự : b( c2 + a2 ) ≥ 2abc ; c( a2 + b2 ) ≥ 2abc
Cộng vế với vế các bđt trên ta có đpcm
Đẳng thức xảy ra <=> a = b = c
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí
Ta có:\(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)
\(\Rightarrow a^2+b^2>2\left(đpcm\right)\)