K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HN
5 tháng 1 2018
\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)
\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)
19 tháng 3 2019
a)8(a^3+b^3+c^3)>=(a+b)^3+(b+c)^3+(c+a)^3
=>8(a^3+b^3+c^3)>=2(a^3+b^3+c^3)+3ab(a+b)+3bc(b+c)+3ca(c+a)
=>6(a^3+b^3+c^3)>=3ab(a+b)+3bc(b+c)+3ca(c+a) (*)
mà a^3+b^3>=ab(a+b)
=>(*) luôn đúng (đpcm)
b)(a+b+c)^3>=a^3+b^3+c^3+24abc (*)
=> a^3+b^3+c^3+3
(a+b)(b+c)(c+a)>=a^3+b^3+c^3+24abc
mà a+b>=2√ab
Ta có a^3+b^3+c^3+3(2√ab)(2√bc)(2√ca)=a^3+b^3+c^3+24abc
Mà a^3+b^3+c^3+3(a+b)(b+c)(c+a)>=a^3+b^3+c^3+3(2√ab)(2√bc)(2√ca)
=> (*) luôn đúng
2 tháng 10 2019
Áp dụng BĐT \(4x^3+4y^3\ge\left(x+y\right)^3\),ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\);\(4b^3+4c^3\ge\left(b+c\right)^3\);\(4a^3+4c^3\ge\left(a+c\right)^3\)
\(\Rightarrow8a^3+8b^3+8c^3\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\)
\(\Leftrightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\)
NK
10 tháng 11 2019
a) \(A=\left(x^2-\frac{1}{2}x\right)^2+\frac{3}{4}\left(x+\frac{2}{3}\right)^2+\frac{2}{3}>0\)
Ko biết xét khoảng:v
Bài làm
a) Đặt a3 + b3 - ab2 - a2b = 0
<=> ( a + b )( a2 + ab + b2 ) - ab( a + b ) = 0
<=> ( a + b )( a2 + ab + b2 - ab ) = 0
<=> ( a + b )( a2 + b2 ) = 0 (1)
Mà a2 + b2 > 0
=> ( a + b )( a2 + b2 ) > 0 (2)
Từ (1) và (2) => ( a + b )( a2 + b2 ) > 0
Vậy a3 + b3 - ab2 - a2b > 0 ( đpcm )
b) Đặt a5 + b5 - a4b - ab4 = 0
<=> ( a5 - a4b ) + ( b5 - ab4 ) = 0
<=> a4( a - b ) + b4( b - a ) = 0
<=> a4( a - b ) - b4( a - b ) = 0
<=> ( a - b )( a4 - b4 ) = 0 (1)
Mà a4 - b4 = ( a2 + b2 )( a2 - b2 ) < 0
=> ( a - b )( a4 - b4 ) < 0 (2)
Từ (1) và (2) => ( a - b )( a4 - b4 ) < 0
Vậy a5 + b5 - a4b - ab4 < 0 ( đpcm )