Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều rộng mảnh đất trồng rau là x-15(m)
Chiều dài mảnh đất trồng rau là x-10(m)
Theo đề, ta có:
(x-15)(x-10)=475
=>\(x^2-25x+150-475=0\)
=>\(x^2-25x-325=0\)
=>\(\left[{}\begin{matrix}x=\dfrac{25+5\sqrt{77}}{2}\left(nhận\right)\\x=\dfrac{25-5\sqrt{77}}{2}\left(loại\right)\end{matrix}\right.\)
Vậy: \(x=\dfrac{25+5\sqrt{77}}{2}\left(m\right)\)
Chiều dài của mảnh đất trồng rau: \(x-8\) (m)
Chiều rộng của mảnh đất trồng rau: \(x-12\left(m\right)\)
Diện tích của mảnh đất trồng rau: \(\left(x-8\right)\left(x-12\right)\left(m^2\right)\)
Ta có phương trình:
\(\left(x-8\right)\left(x-12\right)=96\)
\(\Leftrightarrow x^2-8x-12x+84=96\)
\(\Leftrightarrow x^2-20x+96-96=0\)
\(\Leftrightarrow x^2-20x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=20\left(tm\right)\end{matrix}\right.\)
Vậy độ dài của khu vườn là 20 m
Giải:
a, đa thức tính diện tích mảnh đất trồng rau là:
S = \(x.x\) (m2)
S = \(x^2\) (m2)
b,Theo bài ra ta có: \(x^2\) = 96
\(\) \(\left[{}\begin{matrix}x=4\sqrt{6}\\x=-4\sqrt{6}\end{matrix}\right.\)
Vì \(x\) > 0 nên \(x\) = 4\(\sqrt{6}\)
Kết luận: cạnh của khu vườn có độ dài là: 4\(\sqrt{6}\)(m)
Ta có
Diện tích khu vườn hình vuông là \(695474^2\)
diện tích hình chữ nhật là \(695477.695471=\left(695474+3\right)\left(695474-3\right)\)
= \(695474^2-9\)
Ta có \(695474^2>695474^2-9\)
=> khu vườn hình vuông có diện tích lớn hơn
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...