K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

A B C H D x

Ta có:\(\widehat{BAH}=180^0-\widehat{HBA}-\widehat{BHA}=180^0-90^0-45^0=45^0\)

Do  \(BD\) là tia phân giác \(\widehat{ABC}\)nên \(\widehat{ABD}=45^0:2=22,5^0\)

Mặt khác:\(\widehat{BDA}=45^0\Rightarrow\widehat{BAC}=180^0-\widehat{ABD}-\widehat{BDA}=180^0-45^0-22,5^0\Rightarrow\widehat{BAC}=112,5^0\)

\(\Rightarrow\widehat{HAC}=\widehat{BAC}-\widehat{BAH}=112,5^0-45^0=67,5^0\left(1\right)\)

Gọi Ax là tia đối của tia AB.

Ta có:\(\widehat{CAx}=180^0-\widehat{HAC}-\widehat{BAH}=180^0-67,5^0-45^0=67,5^0\left(2\right)\)

Từ (1);(2) suy ra AC là tia phân giác  \(\widehat{HAx}\) hay AC là tia phân giác ngoài tại đỉnh A của tam giác ABH.

Xét  \(\Delta\)ABH có:AD là tia phân giác ngoài cắt tia phân giác trong BD tại D nên HD là tia phân giác ngoài tại H.

\(\Rightarrow\widehat{DHC}=90^0:2=45^0\Rightarrow\widehat{DHC}=\widehat{ABC}=45^0\)

\(\Rightarrow AB//HD\)(có cặp góc đồng vị bằng nhau)

P/S:Thưa cô.Sao lại đưa câu hỏi này vào chuyên mục Toán Hay ah=)) 

2 tháng 4 2019

A B C H D I

*Lưu ý : hình ảnh chỉ mang tính chất minh họa.

Đây chỉ là "dàn ý" thôi nhé ! Khi làm bạn cần trình bày đầy đủ vào bài làm.

a) BD là phân giác => \(\widehat{ABD}\)\(\widehat{DBH}\)\(\frac{45^o}{2}\)= 22,5o

\(\widehat{BIH}\)\(\widehat{DIA}\)= 90o - 22,5o = 67,5o 

\(\widehat{BDA}\)= 45o (gt)

=> \(\widehat{HAC}\)= 180o - 45o - 67,5o = 67,5o                  (1)

Gọi AK là phân giác góc A trong tam giác ABH.

=> \(\widehat{BAK}\)\(\widehat{KAH}\)= 22,5o                                 (2)

Từ (1) và (2) => \(\widehat{KAC}\)= 90o

=> đpcm

b) ?

2 tháng 2 2018

Câu 1: Em tham khảo tại đây nhé.

Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath

a) Xét ΔBDA vuông tại A và ΔBDH vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔBDA=ΔBDH(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔBDA=ΔBDH(cmt)

nên DA=DH(hai cạnh tương ứng)

mà DH<DC(ΔDHC vuông tại H)

nên DA<DC

8 tháng 8 2018

a, Xét tg BAE và tg BDE  ( \(\widehat{BAE}=\widehat{BDE}=90^0\))

BA=BD (gt)

BE chung

=> tg BAE = tg BDE ( ch-cgv)

=> AE=ED 

Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm) 

b, +ED vuông BC

+ AH vuông BC

=> AH//DE

=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)

Lại có gọi m là giao 2 đường thẳng BE và AD

vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)

Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)

+ AD = ED (cma)

+ EM chung

=> tg AEM = tg DEM ( ch-cgv)

=> \(\widehat{DAE}=\widehat{ADE}\)(2)

tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC

a: \(BC=\sqrt{4^2+5^2}=\sqrt{41}\left(cm\right)\)

b: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

Suy ra: \(\widehat{BAD}=\widehat{BDA}\)

c: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)

\(\widehat{KAD}+\widehat{BAD}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)

nên AD là tia phân giác của góc HAC

18 tháng 4 2021

a, Vì BA= BD => tam giác BAD cân tại B => góc DBA = góc DAB

b, Trong tam giác vuông ADH có: góc BDA + góc DAH = 90 độ

Mà góc CAB + góc DAH = góc CAB = 90 độ

=> góc BDA + góc DAH = góc CAB + góc DAB

Mà góc DBA = góc DAB ( cmt)

=> góc DAH = góc CAD => AD là tia phân giác của góc HAC

c, Xét tam giác AKD và tam giác AHD, có:

AD chung ; góc DAH = góc DAK ( AD là tia phân giác của góc HAC)

góc AHD = góc AKD ( AH là đường cao ; DK vuông góc AC)

=> tam giác AKD = tam giác AHD ( cạnh huyền - góc nhọn )

=> AH = AK ( 2 cạnh tương ứng)

d, Ta có : BC + AH = BD + BC + AH = AB + AK ( vì BD = AB ; AH = AK) (1)

Xét tam giác DC vuông tại K có:

KC là cạnh góc vuông

DC là cạnh huyền

=> KC <DC ( quan hệ giữa đường vuông góc và đường xiên) (2)

Từ (1) và (2) => BC + AH > AB+ KC + AC

=> BC + AH > AB+ AC ( Vì AC = KC + AK)

Đánh giá cho mình nhá ! =))

 

18 tháng 4 2021

A B C K H D