Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{-4}=-\frac{25}{x}\)
\(\Leftrightarrow x^2=100\)
\(\Leftrightarrow x=\pm10\)
#H
a) \(-x+80=-220-5x\)
\(\Rightarrow-x+5x=-220-80\)
\(\Rightarrow4x=-300\)
\(\Rightarrow x=-\dfrac{300}{4}\)
\(\Rightarrow x=-75\)
b) \(98+\left(x-12\right)+68=-80-x\)
\(\Rightarrow166+\left(x-12\right)=-80-x\)
\(\Rightarrow166+x-12=-80-x\)
\(\Rightarrow154+x=-80-x\)
\(\Rightarrow154+80=-x-x\)
\(\Rightarrow-2x=234\)
\(\Rightarrow x=-\dfrac{234}{2}\)
\(\Rightarrow x=-117\)
c) \(122+x-78=-55-4x-1\)
\(\Rightarrow44+x=-56-4x\)
\(\Rightarrow x+4x=-56-44\)
\(\Rightarrow5x=-100\)
\(\Rightarrow x=-\dfrac{100}{5}\)
\(\Rightarrow x=-20\)
d) \(663+9x=-x-37\)
\(\Rightarrow9x+x=-37-663\)
\(\Rightarrow10x=-700\)
\(\Rightarrow x=-\dfrac{700}{10}\)
\(\Rightarrow x=-70\)
a) \(\left(2x-4\right)\left(x-2\right)^3=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-4=0\\\left(x-2\right)^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\x-2-0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=2\end{matrix}\right.\)
\(\Rightarrow x=2\)
b) \(3^{x-1}:81=3^3\)
\(\Rightarrow3^{x-1}:3^4=3^3\)
\(\Rightarrow3^{x-1-4}=3^3\)
\(\Rightarrow3^{x-5}=3^3\)
\(\Rightarrow x-5=3\)
\(\Rightarrow x=8\)
c) \(x^{13}=x\)
\(\Rightarrow x^{13}-x=0\)
\(\Rightarrow x\left(x^{12}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{12}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{12}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d) \(\left(x-9\right)^4=\left(x-9\right)^2\)
\(\Rightarrow\left(x-9\right)^2=x-9\)
\(\Rightarrow\left(x-9\right)^2-\left(x-9\right)=0\)
\(\Rightarrow\left(x-9\right)\left(x-9-1\right)=0\)
\(\Rightarrow\left(x-9\right)\left(x-10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x-10=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=10\end{matrix}\right.\)
a: Xét ΔABI vuông tại I và ΔACI vuông tại I có
AB=AC
AI chung
=>ΔABI=ΔACI
b: Sửa đề: cắt BK tại D
Xét ΔKAD vàΔKCB có
góc KAD=góc KCB
KA=KC
góc AKD=góc CKB
=>ΔKAD=ΔKCB
=>AD=CB
mà AD//CB
nên ABCD là hình bình hành
=>AB=CD
a) \(3\dfrac{1}{4}=\dfrac{2}{3}:\left(\dfrac{-x}{2}\right)\Leftrightarrow\dfrac{13}{4}=\dfrac{2}{3}.\dfrac{-2}{x}\Leftrightarrow\dfrac{-2}{x}=\dfrac{39}{8}\Leftrightarrow x=-\dfrac{16}{39}\)
b) \(1-2\left(x+\dfrac{1}{3}\right)=\left|-\dfrac{2}{3}+\dfrac{1}{5}\right|\Leftrightarrow1-2x-\dfrac{2}{3}=\dfrac{7}{15}\Leftrightarrow2x=-\dfrac{2}{15}\Leftrightarrow x=-\dfrac{1}{15}\)
c) \(\left(2x-1\right)\left(\dfrac{2}{5}-\dfrac{1}{3}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\dfrac{2}{5}-\dfrac{1}{3}x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\dfrac{1}{3}x=\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{6}{5}\end{matrix}\right.\)
d) \(-4\dfrac{3}{5}.2\dfrac{4}{23}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\Leftrightarrow-10\le x\le-\dfrac{13}{7}\Leftrightarrow x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1\right\}\)(do \(x\in Z\))
Bài 2:
c: Ta có: \(\left(2x-1\right)\left(\dfrac{2}{5}-\dfrac{1}{3}x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\dfrac{2}{5}-\dfrac{1}{3}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\\dfrac{1}{3}x=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{6}{5}\end{matrix}\right.\)
a) \(-\left(-a+c-d\right)-\left(c-a+d\right)\)
\(=a-c+d-c+a-d\)
\(=2a-2c\)
b) \(-\left(a+b-c+d\right)+\left(a-b-c-d\right)\)
\(=-a-b+c-d+a-b-c-d\)
\(=-2b-2d\)
c) \(a\left(b-c-d\right)-a\left(b+c-d\right)\)
\(=ab-ac-ad-ab-ac+ad\)
\(=-2ac\)
d) \(\left(a-b\right)+\left(c-d\right)+\left(a+c\right)-\left(b+d\right)\)
\(=a-b+c-d+a+c-b-d\)
\(=2a-2b+2c-2d\)
1: \(A=-\dfrac{1}{3}\cdot3\cdot x\cdot x^3\cdot y\cdot z^2=-x^4yz^2\)
2: \(A=-1^4\cdot\left(-1\right)\cdot2^2=4\)
a) Ta thấy :2>0 , |x+5/6|>0
--->A(max)=2
----->|x+5/6|=0
x=0-5/6=-5/6
Vậy A(max)=2 <---->x=-5/6
b) Ta thấy :5>0 , |2/3-x|>0
---->B(max)=5
----->|2/3-x|=0
x=0-2/3=-2/3
Vậy B(max)=5<--->x=-2/3(cho mình cái đúng nhé ,thanks)
a) Vì \(\left|x+\frac{5}{6}\right|\ge0∀ x\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\ge2∀x\)
=> A ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\left|x+\frac{5}{6}\right|=0\Leftrightarrow x+\frac{5}{6}=0\Leftrightarrow x=\frac{-5}{6}\)
b) Vì \(\left|\frac{2}{3}-x\right|≥0∀x\)
\(\Rightarrow5-\left|\frac{2}{3}-x\right|\ge5∀x\)
=> B ≥ 5 ∀ x
Dấu "=" xảy ra <=> \(\Leftrightarrow\left|\frac{2}{3}-x\right|=0\Leftrightarrow\frac{2}{3}-x=0\Leftrightarrow x=\frac{2}{3}\)