Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABM và tam giác CMK
AM = MC ( M là trung điểm của AC)
BM=MK
góc AMB =góc CMK
=> tam giác ABM và tam giác CMK( c.g.c)
=>goc BAC = goc ACK ( hai canh tuong ung )
ma goc BAC = 900
=> góc ACK= 900
mình đã trả lời hết các câu rồi nhưng mình ko may nhấn vào trang khác trên màn hình nên khi trả về thì không còn nên mình chỉ làm câu a cho mình xin lỗi nhưng nếu bạn còn cần thì mình giải ngày cho .cảm ơn bạn
A) XÉT \(\Delta BAM\)VÀ\(\Delta KCM\)CÓ
\(AM=CM\left(GT\right)\)
\(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)
\(BM=KM\left(GT\right)\)
\(\Rightarrow\Delta BAM=\Delta KCM\left(C-G-C\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{KCM}=90^o\)hai góc tương ứng
HAY \(\widehat{ACK}=90^o\)
b) XÉT \(\Delta IBN\)VÀ\(\Delta CAN\)CÓ
\(IN=CN\left(GT\right)\)
\(\widehat{N_1}=\widehat{N_2}\left(Đ/Đ\right)\)
\(BN=AN\left(GT\right)\)
\(\Rightarrow\Delta IBN=\Delta CAN\left(C-G-C\right)\)
\(\Rightarrow\widehat{IBN}=\widehat{CAN}=90^o\)hai góc tương ứng
hai góc này ở vị trí SO LE TRONG BẰNG NHAU
\(\Rightarrow IB//AC\left(đpcm\right)\)
VÀ\(\widehat{BAM}=\widehat{KCM}=90^o\)
HAY\(\widehat{BAC}=\widehat{ACK}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AK//BC\left(đpcm\right)\)
C)VÌ\(\widehat{IBN}=\widehat{CAN}=90^o\)
HAY\(\widehat{IBA}=\widehat{BAC}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow IA//BC\left(1\right)\)
MÀ\(AK//BC\left(CMT\right)\left(2\right)\)
TỪ (1)VÀ (2) => I,A,K THẲNG HÀNG
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
a: Ta có: ΔBAC cân tại B
mà BM là đường trung tuyến
nên BM\(\perp\)AC
Xét tứ giác ABCN có
M là trung điểm chung của AC và BN
=>ABCN là hình bình hành
=>AB//NC và AB=NC
Ta có: AB//NC
C\(\in\)NK
Do đó: AB//CK
Ta có: AB=CN
CN=CK
Do đó: AB=CK
Xét tứ giác ABKC có
AB//KC
AB=KC
Do đó: ABKC là hình bình hành
=>AC//BK
b: Xét ΔNAB có
E,M lần lượt là trung điểm của NA,NB
=>EM là đường trung bình của ΔNAB
=>\(EM=\dfrac{1}{2}AB\)