Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(yz-xz-xy=0\Rightarrow yz-xz=xy\)
\(B=\frac{yz}{x^2}-\frac{zx}{y^2}-\frac{xy}{z^2}\)\(=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}\)
Xét: \((yz)^3-(xz)^3-(xy)^3=(yz-xz)^3+3yz.xz(yz-xz)-(xy)^3\)
\(=(xy)^3+3yz.xz.xy-(xy)^3=3x^2y^2z^2\)
\(\Rightarrow B=\frac{(yz)^3-(xz)^3-(xy)^3}{x^2y^2z^2}=\frac{3x^2y^2z^2}{x^2y^2z^2}=3\)
Từ \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\)
\(\Rightarrow\frac{x}{xy}+\frac{y}{xy}=\frac{y}{yz}+\frac{z}{yz}=\frac{x}{xz}+\frac{z}{xz}\)
\(\Rightarrow\frac{1}{y}+\frac{1}{x}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\).Khi đó
\(P=\frac{20xy+4yz+2013xz}{x^2+y^2+z^2}=\frac{20x^2+4x^2+2013x^2}{x^2+x^2+x^2}=\frac{2037x^2}{3x^2}=679\)
cho x,y>0 thỏa mãn \(^{x^2+y^2-xy=8}\)
tìm GTNN và GTNN của biểu thức M=\(^{x^2+y^2}\)
\(\frac{x}{y+z}=1-\left(\frac{y}{z+x}+\frac{z}{x+y}\right)\)
\(=1-\frac{xy+y^2+xz+z^2}{\left(x+z\right)\left(x+y\right)}\) \(=\frac{x^2+xy+xz+yz-xy-y^2-xz-z^2}{\left(x+z\right)\left(x+y\right)}\)
\(=\frac{x^2+yz-y^2-z^2}{\left(x+y\right)\left(x+z\right)}=\frac{\left(x^2+yz-y^2-z^2\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)
\(=\frac{x^2y+x^2z-y^3-z^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(\Rightarrow\frac{x^2}{y+z}=\frac{x^3y+x^3z-xy^3-xz^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
+ CM tương tự rồi công vế theo vế ta đc
BT = 0
Vì \(17.\left(xy+yz+zx\right)=105\Rightarrow\left(xy+yz+zx\right)=\frac{105}{17}\)
Ta có :
\(\left(x+z+y\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=19+2\left(\frac{105}{17}\right)=31\frac{6}{17}\)
Do đó : \(x+y+z=\sqrt{31\frac{6}{17}}\)
hoặc \(x+y+z=-\sqrt{31\frac{6}{17}}\)
Chúc bạn học tốt nha !!!
1)
\(A=\left(x-y+1\right)^2+\left(y-2\right)^2+5\ge5\)
GTNN A=5 khi y=2 và x=1
2)
\(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)
\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
Mà \(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)
\(\Rightarrow x^2+y^2+z^2=0\)
Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)
Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)
Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)