K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
23 tháng 5 2019

\(\frac{x}{y+z}=1-\left(\frac{y}{z+x}+\frac{z}{x+y}\right)\)

\(=1-\frac{xy+y^2+xz+z^2}{\left(x+z\right)\left(x+y\right)}\) \(=\frac{x^2+xy+xz+yz-xy-y^2-xz-z^2}{\left(x+z\right)\left(x+y\right)}\)

\(=\frac{x^2+yz-y^2-z^2}{\left(x+y\right)\left(x+z\right)}=\frac{\left(x^2+yz-y^2-z^2\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)

\(=\frac{x^2y+x^2z-y^3-z^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(\Rightarrow\frac{x^2}{y+z}=\frac{x^3y+x^3z-xy^3-xz^3}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

+ CM tương tự rồi công vế theo vế ta đc

BT = 0

28 tháng 8 2019

1/x + 1/y + 1/z = 13

<=> yz/x + xy/z + zx/y = 13

<=> xyz/x^2 + xyz/y^2 + xyz/z^2 = 13

<=> (x+y+z)(1/x^2 + 1/y^2 + 1/z^2) = 13

<=> 1/x^2 + 1/y^2 + 1/z^2 = 13/(x+y+z)

Hết ra rồi 

10 tháng 2 2022

\(x+y+z=0\\ \Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-z-x\\z=-x-y\end{matrix}\right.\)

\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{yz}{y^2+z^2-x^2}+\dfrac{zx}{z^2+x^2-y^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(-x-y\right)^2}+\dfrac{yz}{y^2+z^2-\left(-y-z\right)^2}+\dfrac{zx}{z^2+x^2-\left(-z-x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-\left(x+y\right)^2}+\dfrac{yz}{y^2+z^2-\left(y+z\right)^2}+\dfrac{zx}{z^2+x^2-\left(z+x\right)^2}\)

\(=\dfrac{xy}{x^2+y^2-x^2-2xy-y^2}+\dfrac{yz}{y^2+z^2-y^2-2yz-z^2}+\dfrac{zx}{z^2+x^2-z^2-2zx-x^2}\)

\(=\dfrac{xy}{-2xy}+\dfrac{yz}{-2yz}+\dfrac{zx}{-2zx}\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)

\(=-\dfrac{3}{2}\)

 

20 tháng 3 2017

Bài này trên diễn đàn có nhiều thực chưa có bài thực sự đúng

\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\) (1)

đk: \(\left\{{}\begin{matrix}x+y\ne0\\x+z\ne0\\y+z\ne0\end{matrix}\right.\) Nếu x+y+z=0\(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)(*)

Thay (*) vào (1)

\(\dfrac{x}{-x}+\dfrac{y}{-y}+\dfrac{z}{-z}=-3\) kết luận: \(x+y+z\ne0\)

Nhân 2 vế (1) với x+y+z khác 0 ta có\(\left(1\right)\Leftrightarrow\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=\left(x+y+z\right)\)

\(\Leftrightarrow\left(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\right)+\left(y+z\right).\dfrac{y}{x+z}+\left(x+y\right).\dfrac{z}{x+y}+\left(x+z\right)\dfrac{x}{y+z}=\left(x+y+z\right)\)

\(\Leftrightarrow\left(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)

20 tháng 3 2017

Vẫn lỗi:

\(.....\\ \left(x+z\right)\dfrac{x}{y+z}+\left(z+x\right)\dfrac{y}{z+x}+\left(x+y\right)\dfrac{z}{x+y}\)

....

23 tháng 5 2019

Ta có: 2xy-x+y-2=0

⇔ 2xy-x=2+y

⇔ x.(2y-1)=y+2

⇒ x= \(\frac{y+2}{2y-1}\)

Vì x nguyên nên \(\frac{y+2}{2y-1}\) cũng nguyên.

Ta có: \(\frac{y+2}{2y-1}=\frac{2y+4}{2y-1}=\frac{\left(2y-1\right)+5}{2y-1}=1+\frac{5}{2y-1}\)

Để \(\frac{y+2}{2y-1}\) nguyên thì \(\frac{5}{2y-1}\) nguyên

⇒ 2y-1 ∈ Ư(5) = {-5;-1;1;5}

⇔ y ∈ { -2;0;1;3 }

⇒ x ∈ {0;-4;6;2}

Vậy (x;y)={(0;-2); (-4;0); (6;1); (2;3)}

23 tháng 5 2019

mơn bn nek