\(n^4-4n^3-4n^2+16n⋮384\) với n chẵn và n>4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

ta có : \(n^4-4n^3-4n^2+16n=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n^3-4n\right)\left(n-4\right)=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)

th1: \(n=6\) ta có : \(n\left(n+2\right)\left(n-2\right)\left(n-4\right)=384⋮384\)

th2: giả sử \(n=2k\) với \(\left(k\in Z\backslash k>2\right)\)

thì ta có : \(2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)⋮384\)

vậy ta có khi \(n=2k+2\)

khi đó : \(n\left(n-2\right)\left(n+2\right)\left(n-4\right)=\left(2k+2\right)\left(2k\right)\left(2k+4\right)\left(2k-2\right)\)

tiếp đến là bn sử dụng phương pháp trên để chứng minh \(8\left(2k+2\right)\left(2k\right)\left(2k-2\right)⋮384\)

\(\Rightarrow\left(đpcm\right)\)

25 tháng 6 2017

A\(=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^2\right)+\left(-4n^3+16n\right)\)

\(=n^2\left(n^2-4\right)-4n\left(n^2-4\right)\)

\(=n\left[\left(n^2-4\right)\left(n-4\right)\right]\)

\(n.\left(n+2\right)\left(n-2\right)\left(n-4\right)\)

Ta có: tích 4 số chắn liên tiếp chia hết cho 384

=> đpcm

25 tháng 6 2017

n chẵn => n=2k

\(\Rightarrow A=\left(2k\right)^4-4.\left(2k\right)^3-4\left(2k\right)^2+16.2k\\ =16k^4-32k^3-16k^2+32k\\ =16k^3\left(k-2\right)-16k\left(k-2\right)\\ =\left(k-2\right)\left(16k^3-16k\right)\\ =\left(k-2\right)\left(16k\left(k^2-1\right)\right)\\ =16.\left(k-2\right)\left(k-1\right).k.\left(k+1\right)\\ \)

Tích 4 số tự nhiên liên tiếp luôn chia hết cho 3;8 nên chia hết cho 24

\(\Rightarrow A⋮16.24\\ \Rightarrow A⋮384\)

10 tháng 9 2017

Cái này là j

10 tháng 9 2017

anh dz-À mà ko dz đâu .-. xem giúp em đi

15 tháng 2 2017

Giải giúp mk cụ thể từng bước nhak mấy p

thanghoa

15 tháng 2 2017

Mình không hiểu lắm bạn à ... nó không có kết quả cụ thể sao ?

23 tháng 12 2017

n chẵn => n=2k ( k thuộc N)

\(A=n^3+4n=\left(2k\right)^3+4\left(2k\right)=8k^3+8k=8k\left(k^2+1\right)⋮16\)

4 tháng 8 2018

ta có : \(\dfrac{n^2+4n+5}{n+4}=\dfrac{n\left(n+4\right)+5}{n+4}=n+\dfrac{5}{n+4}\)

\(\Rightarrow x+4\inước_5\) \(\Rightarrow\) \(x+4\in\left\{\pm1;\pm5\right\}\) \(\Rightarrow\) \(\left[{}\begin{matrix}x+4=1\\x+4=-1\\x+4=5\\x+4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-5\\x=1\\x=-9\end{matrix}\right.\) (tmđk)

vậy \(x=-9;x=-5;x=-3;x=1\)

2 tháng 11 2018

Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5

Vì 16n có số tận cùng là 6;  =>16n.2 có  số tận cùng là 2

81n có số tận cùng là 1

=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n