Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=7+7^2+7^3+.....+7^{4n}\) \(\left(n\in N\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+......+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+....+7^{4n-3}.400\)
\(\Leftrightarrow\left(7+7^5+....+7^{4n-3}\right).400\) chia hết cho 400
Vậy A chia hết cho 400
Bạn Nguyễn Đức Tiến có thể viết rõ hộ mình được không ạ? Mình chưa hiểu
Giả sử A=4n3 - 6n2 + 3n + 37 chia hết cho 125 với mọi n là số tự nhiên .
-> 4n3 - 6n2 + 3n + 37 chia hết cho 5
-> 2(4n3 - 6n2 + 3n + 37) chia hết cho 5
-> (2n-1)3 +75 chia hết cho 5
-> (2n-1)3 chia hết cho 5 -> 2n-1 chia hết cho 5 -> (2n-1)3 chia hết cho 125 nhưng 75 không chia hết cho 125 -> 2A không chia hết cho 125 -> A không chia hết cho 125 (trái giả thiết)
-> đpcm
n chẵn => n=2k ( k thuộc N)
\(A=n^3+4n=\left(2k\right)^3+4\left(2k\right)=8k^3+8k=8k\left(k^2+1\right)⋮16\)