Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n+19=n+2+17
Để n+19 chia hết cho n+2 thì n+2+17 chia hết cho n+2
n thuộc N => n+2 thuộc N
=> n+2 thuộc Ư 917)={1;17}
Nếu n+2=1 => n=-3(ktm)
Nếu n+2=17 => n=15 (tm)
\(3x+15⋮n+1\)
\(3\left(x+1\right)+12⋮n+1\)
Vì \(3\left(n+1\right)⋮n+1\)
\(\Rightarrow12⋮n+1\)
\(\Rightarrow n+1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự xét bảng nha bn
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
a) Ta có: 8n+5 chia hết cho 6n-1
=>3.(8n+5) chia hết cho 6n-1( mình tìm BCNN(8,6)=24 rồi tính nhé)
Ta có: 6n-1 chia hết cho 6n-1
=> 4.(6n-1) chia hết cho 6n-1
=>3.(8n+5)-4.(6n-1) chia hết cho 6n-1
(24n+15)-(24n-4) chia hết cho 6n -1
11 chia hết cho 6n+1
=>6n-1 thuộc {1;11}
Mà n thuộc N => 6n-1 = 11
6n = 12
=>n=2
Vậy n=2
b) Tương tự vậy nha bạn. ( n-5)2 chia hết cho n-5
Các bước còn lại tương tự n= 6
c) cũng tương tự như vậy. Ta có kết quả n=1
n + 19 ⋮ n + 2
⇔ n + 2 + 17 ⋮ n + 2
⇔ 17 ⋮ n + 2
⇔ n + 2 ϵ { -17; -1; 1; 17}
⇔ n ϵ { -19; -3; -1; 15}
n + 19 ⋮ n + 2
⇔ n + 2 + 17 ⋮ n + 2
⇔ 17 ⋮ n + 2
⇔ n + 2 ϵ { -17; -1; 1; 17}
⇔ n ϵ { -19; -3; -1; 15}