Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba số tự nhiên liên tiếp là số thú vị: 33 = 3.11; 34 = 2.17; 35 = 5.7
Gọi 4 số tự nhiên liên tiếp là : \(a_1\) < \(a_2\) < \(a_3\) < \(a_4\)
Xét \(a_1\le4\)=> Khong tồn tại 4 số tự nhiên a, b, c, d đồng thời là số thú vị
Xét \(a_1>4\)
Ta có: \(a_1\) ; \(a_2\) ; \(a_3\) ; \(a_4\) là 4 số tự nhiên liên tiếp
=>Tồn tại i để \(a_i⋮4\); \(i\in\left\{1;2;3;4\right\}\)
khi đó có số b >1 để: \(a_i=4.b\)không là số thú vị
Vậy không tồn tại 4 số tự nhiên liên tiếp bất kì đồng thời là số thú vị.
Gọi số đó là \(\overline{ab}\) (a,b là chữ số; a khác 0)
Theo bài ra ta có:
\(\overline{ab}+210=\overline{a3b}\\ \\ \Rightarrow a.10+b+210=a.100+30+b\\ \\ \Rightarrow210-30=a.100-a.10\\ \\ \Rightarrow180=a.90\Rightarrow a=180:90=2\)
Do a+b=9 (theo đề bài) ⇒ b=7⇒\(\overline{ab}=27\)
Vậy số cần tìm là 27
Tôi đoán mò ra 132 nhưng làm thế nao ra đc nó giúp tớ nhé cam on cac ban
Lời giải:
Gọi 3 chữ số tạo nên số đó là $a,b,c$ tỉ lệ với $1,2,3$
Đặt $\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=t$
$a=t; b=2t; c=3t$
Số đó là bội của $72$ nên chia hết cho $9$
$\Rightarrow a+b+c\vdots 9$
$t+2t+3t\vdots 9$
$6t\vdots 9$
$\Rightarrow t\vdots 3$
$\Rightarrow t=0; 3; 6;....$
Nếu $t\geq 6$ thì $c=3t>10$ (vô lý)
Nếu $t=0$ thì $a=b=c=0$ (vô lý)
Vậy $t=3$
$\Rightarrow a=3; b=6; c=9$
Vì số đó chia hết cho $72$ nên số đó là $936$
Gọi các chữ số của số đó là \(a,b,c\left(a< b< c\right)\)
Theo đề bài , ta có : \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)
Vì số đó là bội của 27 nên cũng là bội của 9 \(\Rightarrow a+b+c⋮9\) \(\left(1\right)\)
Có \(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\)\(\Rightarrow\frac{a}{1}+\frac{b}{2}+\frac{c}{3}=\frac{a+b+c}{6}\)
Ta có : \(\frac{a}{1}\)là số nguyên nên \(a+b+c⋮6\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a+b+c\in BC\left(9;6\right)=B\left(18\right)\)
Ta có : \(3\le a+b+c\le27\)nên \(a+b+c=18\)
\(\Rightarrow\frac{q}{1}=\frac{b}{2}=\frac{c}{3}=\frac{18}{6}=3\)
\(\Rightarrow a=3;b=6;c=9\)
Vậy số cần tìm là 369