K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Gọi chiều dài mảnh vườn là a(m)

Khi đó ta có \(2a + 2x = 40 \Leftrightarrow a = 20 - x\)

Vậy diện tích mảnh vườn hình chữ nhật là: \(S = a.x = (20 - x)x =  - {x^2} + 20x\)

b) Để diện tích mảnh vườn lớn nhất thì S phải lớn nhất:

Ta có \(S =  - {x^2} + 20x =  - ({x^2} - 20x + 100) + 100 = 100 - {(x - 10)^2} \le 100\)(vì \({(x - 10)^2} \ge 0\))

Diện tích mảnh vườn lớn nhất là 100 \(\left( {{m^2}} \right)\) khi x = 10

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Diện tích một phần tư hình tròn là: \(\frac{1}{4}\pi {r^2}\)

Gọi x là biến số thể hiện kích thước của bán kính.

Công thức hàm số tính diện tích bồn hoa là: \(f(x) = \frac{1}{4}\pi {x^2}\)

+) Vì bán kính bồn hoa có kích thước từ 0,5 m đến 3 m nên \(0,5 \le x \le 3\)

Vậy tập xác định của hàm số này là \(D = [0,5;3]\)

b) Diện tích là \(0,5\pi \;{m^2}\) tức là\(f(x) = 0,5\pi \;\)

\( \Leftrightarrow \frac{1}{4}\pi {x^2} = 0,5\pi  \Leftrightarrow {x^2} = 2 \Rightarrow x = \sqrt 2 \) (do \(0,5 \le x \le 3\))

Vậy bán kính bồn hoa bằng \(\sqrt 2 \;m\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Theo giải thiết ta có tam thức sau: \(f\left( x \right) = 20.15 - \left( {20 + x} \right)\left( {15 - x} \right) =   {x^2} + 5x\)

Tam thức có \(\Delta  = 25 > 0\), có hai nghiệm phân biệt \({x_1} = 0;{x_2} = -5\)

Vậy khoảng diện tích tăng lên là \(x>0\) và \(x<-5\), khoảng diện giảm đi là \(x \in(-5;0)\) và diện tích không đổi khi \(x = 0\) và \(x = -5\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Gọi x là chiều rộng của vườn hoa (\(x > 0\), tính bằng đơn vị mét)

Theo giả thiết ta có chiều dài là \(15 - x\)

Diện tích của vườn hoa có phương trình như sau \(f\left( x \right) = x\left( {15 - x} \right) =  - {x^2} + 15x\)

Ta có bất phương trình thỏa mãn bài toán như sau:\( - {x^2} + 15x \ge 50 \Leftrightarrow  - {x^2} + 15x - 50 \ge 0\)

Xét tam thức \(g\left( x \right) =  - {x^2} + 15x - 50\) có hai nghiệm phân biệt là \({x_1} = 5;{x_2} = 10\) và \(a =  - 1 < 0\) nên \(g\left( x \right) > 0\) khi x thuộc đoạn  \(\left[ {5;10} \right]\)

Vậy khi chiều rộng nằm trong đoạn \(\left[ {5;10} \right]\) mét thì diện tích vườn hoa ít nhất là 50 \({m^2}\).

7 tháng 3 2018

Đáp án: D

Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là   (m) 

Theo đề bài ta có:  là nghiệm của phương trình 

19 tháng 9 2017

Đáp án: A

Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là  (m) 

Theo đề bài ta có:

Để cắt một bảng hiệu quảng cáo hình Elip có trục lớn là 80 cm và trục nhỏ là 40 cm từ một tấm ván ép hình chữ nhật có kích thước là 80 cm x 40 cm, người ta vẽ hình elip đó trên tấm ván ép như hướng dẫn sau:Chuẩn bị- Hai cái đinh, một vòng dây kín không đàn hồi, bút chì.Thực hiện- Xác định vị trí (hai tiêu điểm của elip) và ghim hai cái đinh trên 2 điểm đó trên tấm ván.- Quàng vòng dây qua hai chiếc đinh và kéo...
Đọc tiếp

Để cắt một bảng hiệu quảng cáo hình Elip có trục lớn là 80 cm và trục nhỏ là 40 cm từ một tấm ván ép hình chữ nhật có kích thước là 80 cm x 40 cm, người ta vẽ hình elip đó trên tấm ván ép như hướng dẫn sau:

Chuẩn bị

- Hai cái đinh, một vòng dây kín không đàn hồi, bút chì.

Thực hiện

- Xác định vị trí (hai tiêu điểm của elip) và ghim hai cái đinh trên 2 điểm đó trên tấm ván.

- Quàng vòng dây qua hai chiếc đinh và kéo căng tại một điểm M nào đó. Tựa đầu bút chì vào trong vòng dây tại điểm M  rồi di chuyển sao cho dây luôn luôn căng. Đầu bút chì vạch lên tấm bìa một đường elip (Xem minh họa trong hình 15).

Phải ghim hai cái đinh cách các mép tấm bìa bao nhiêu xentimets và lấy vòng dây có độ dài là bao nhiêu?

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Từ giải thiết ta có: \(2a = 80 \Rightarrow a = 40,2b = 40 \Rightarrow b = 20\)

Suy ra, \(c = \sqrt {{a^2} - {b^2}}  = 20\sqrt 3 \)

Suy ra vị trí đinh cách mép là \(a - c = 40 - 20\sqrt 3 = 5,36\) cm

Chiều dài vòng dây là \(2a + 2c = 2.40 + 2.20\sqrt 3 = 149,28\) cm

Vậy phải ghim hai cái đinh cách các mép tấm bìa 5,36 cm và lấy vòng dây có độ dài là 149,28 cm