Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: đường kính AB vuông góc với dây CD tại M (gt) (1)
⇒MC=MD(2)⇒MC=MD(2)
Mà MA = ME (E đối xứng với A qua M) (3)
Từ (2), (3) ⇒⇒ Tứ giác ACED là hình bình hành (4)
Từ (1), (2) ⇒AB⇒AB là đường trung trực của CD
⇒⇒ Điểm E nằm trên đường trung trực AB cách đều 2 đầu mút C và D ⇒EC=ED⇒EC=ED (5)
Từ (4), (5) ⇒⇒ Tứ giác ACED là hình thoi
b) Ta có: AB = 2R = 2 . 6,5 = 13 (cm)
⇒MB=AB−MA=13−4=9(cm)⇒MB=AB−MA=13−4=9(cm)
Theo hệ thức lượng ta có:
MC2 = MA . MB = 4 . 9 = 36
⇔MC=√36=6(cm)⇔MC=36=6(cm)
Từ (2) ⇒MC=MD=CD2⇒MC=MD=CD2
⇔CD=2MC=2.6=12(cm)
em mới học lớp 5 ạ
chứng minh: \(1+tg^2\alpha=\dfrac{1}{cos^2\alpha}\)
xét VT: \(1+tg^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}\left(vì:tg\left(\alpha\right)=\dfrac{sin\left(\alpha\right)}{cos\left(\alpha\right)}\right)\)
\(=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\left(vì:sin^2\alpha+cos^2\alpha=1\right)=VP\Rightarrow1+tg^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Leftrightarrow1+\dfrac{AH^2}{50^2}=\dfrac{1}{\left(\dfrac{AH^2}{AB^2}\right)}=\dfrac{AB^2}{AH^2}\Leftrightarrow\dfrac{2500+AH^2}{2500}=\dfrac{AB^2}{AH^2}\Leftrightarrow2500AH^2+AH^4=2500AB^2\left(1\right)\)
ta có: \(AH^2+BH^2=AB^2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow2500AH^2+AH^4=2500\left(AH^2+50^2\right)\Leftrightarrow AH^4=2500.2500=50^4\Leftrightarrow AH=50\left(m\right)\left(3\right)\)
\(\left(2\right)\left(3\right)\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{50^2+50^2}=50\sqrt{2}\left(m\right)\)
vậy chiều rộng con sông là: \(AH=50\left(m\right)\) và quãng đường đò đã đi là \(AB=50\sqrt{2}\left(m\right)\)
Lần 1 người đó lãi 12-10=2(triệu)
Lần 2 mua lại lãi:12-15=-3(triệu)
Lần 3 bán con bò lãi : 17-15=2triệu (so vs khi mua lại con bò )
So với khi mua con bò vs giá 10 triệu , người đó lãi số tiền là : -3 - 2= -1 ( triệu )
Vì -1 là số âm nên người đó đã lỗ 1 triệu đồng
con kiến cõng con của nó bò qua sông
con kien cong con cua no qua song