Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
* Hướng dẫn giải: Đơn giản ta có được
S 1 = 3 ( 4 πr 2 ) = 12 πr 2 , S 2 = 12 πr 2
⇒ S 1 S 2 = 1
Chọn A.
Gọi r là bán kính quả banh. Ta có:
S 1 = 3 4 πr 2 = 12 πr 2
S 2 = 2 πr . 6 r = 12 πr 2
Không gian mẫu \(\Omega\) chọn 3 thẻ từ 100 thẻ. \(n\left(\Omega\right)=C_{100}^3\).
Gọi \(x,y,z\) là ba số lấy ra được thỏa mãn.
Biến cố A là biến cố chọn được các số \(x,y,z\) đó.
Đặt \(A_k=\left\{\left(x,y,z\right)|x,y,z\in\left\{1,2,...,100\right\},1\le x< y< z=k,x+y>z\right\}\).
Khi đó \(n\left(A\right)=\left|A_1\right|+\left|A_2\right|+...+\left|A_{100}\right|\). Dễ thấy \(\left|A_1\right|=\left|A_2\right|=\left|A_3\right|=0\).
Ta sẽ tính các giá trị của \(\left|A_k\right|\).
TH1: \(k=2m\).
Xét \(1\le x\le m\). suy ra \(k=2m\ge2x\Leftrightarrow k-x\ge x\)
\(x+y>z\Rightarrow y>k-x\Rightarrow k-x+1\le y\le z-1\)
Số cách chọn \(y\) là \(\left(k-1\right)-\left(k-x+1\right)+1=x-1\) cách.
Xét \(x>m\): \(x+y>2x>2m=z\) (thỏa mãn bđt tam giác)
suy ra \(x+1\le y\le z-1=2m-1\).
Số cách chọn \(y\) là: \(\left(2m-1\right)-\left(x+1\right)+1=2m-x+1\) cách.
Tổng số cách là:
\(\sum\left|A_k\right|=\sum_{i=1}^m\left(i+1\right)+\sum_{i=m+1}^{2m-1}\left(2m-i+1\right)=\left(m-1\right)^2\) cách.
TH2: \(k=2m+1\).
Ta làm tương tự như trên, xét với \(1\le x\le m\) và \(x>m\).
Tổng số cách là: \(\sum\left|A_k\right|=\sum_{i=1}^m\left(i-1\right)+\sum_{i=m+1}^{2m}\left(2m-i\right)=m^2-m\) cách.
Vậy \(n\left(A\right)=\sum_{m=2}^{49}m\left(m-1\right)+\sum_{m=2}^{50}\left(m-1\right)^2=79625\) (cách).
\(P\left(A\right)=\dfrac{n\left(\Omega\right)}{n\left(A\right)}=\dfrac{65}{132}\).
Đáp án A
Bạn Nam cao 1,8m nên đường kính của quả bóng không nhỏ hơn 1,8m hay bán kính không nhỏ hơn 0,9m. Do đó thể tích quả bóng thỏa mãn điều kiện là:
Để tổng các số trên 3 quả bằng 5 thì: (2 quả số 1, 1 quả số 3) hoặc (1 quả số 1, 2 quả số 2)
\(\Rightarrow\) Xác suất: \(\dfrac{C_2^1.C_3^2}{C_2^1.C_3^2+C_2^2.C_4^1}=...\)