Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có vẻ lẻ quá bạn.
\(W_t=4W_đ\Rightarrow W_đ=\dfrac{W_t}{4}\)
Cơ năng: \(W=W_đ+W_t=W_t+\dfrac{W_t}{4}=\dfrac{5}{4}W_t\)
\(\Rightarrow \dfrac{1}{2}kA^2=\dfrac{5}{4}.\dfrac{1}{2}kx^2\)
\(\Rightarrow x = \pm\dfrac{2}{\sqrt 5}A\)
Thời gian nhỏ nhất ứng với véc tơ quay từ M đến N.
\(\cos\alpha=\dfrac{2}{\sqrt 5}\)\(\Rightarrow \alpha =26,6^0\)
Thời gian nhỏ nhất là: \(\Delta t=\dfrac{26,6\times 2}{360}.T=\dfrac{26,6\times 2}{360}.\dfrac{2\pi}{20}=0.046s\)
Chọn B
+ Động năng và thế năng bằng nhau khi vật ở vị trí x = ± A 2 2 .
+ A2 = x2 + v 2 w 2 ⇔ A2 = (± A 2 2 )2 + 60 2 10 2 => A = 6 2 cm.
Đáp án B
Phương pháp: Sử dụng công thức tính động năng và định luật bảo toàn cơ năng của con lắc lò xo dao động điều hoà
Cách giải:
Khi động năng bằng thế năng:
Để tính giá trị của t, ta sử dụng công thức:
t = φ / ω
Trong đó:
t là thời gian tính từ lúc con lắc bắt đầu dao động.φ là pha ban đầu của dao động.ω là tần số góc của dao động.Theo đề bài, tần số góc ω = 5π rad/s và pha ban đầu φ = -π/3 rad. Thay vào công thức trên, ta có:
t = (-π/3) / (5π) = -1/15 s
Tuy nhiên, thời gian không thể có giá trị âm, vì vậy giá trị của t là 1/15 s.
Đáp án B
Phương pháp: Áp dụng công thức tính lực độ lớn lực đàn hồi cực đại của con lắc lò xo dao động điều hoà theo phương thẳng đứng.
Cách giải:
Vật ở vị trí cân bằng thì lò xo dãn một đoạn ∆l.
Ta có:
Khi động năng bằng thế năng thì:
Khi đó:
Vì k < 20N/m nên lấy k = 11N/m
Độ lớn cực đại của lực đàn hồi:
Chọn đáp án A
Ta có W t = W d ⇒ W d = 1 2 W
⇒ v = v max 2 = ω A 2 ⇒ A = v 2 ω = 6 2
Đáp án C
Cơ năng của con lắc E = E d 2 + E t 2 = 0 , 128 J
→ Biểu diễ dao động của vật tương ứng trên đường tròn.
+ Từ hình vẽ ta có Δ t = T 360 a r sin − 0 , 5 A A + a r sin 2 A 2 A = π 48
→ T = 0,1π → ω = 20 rad/s
Vậy biên độ dao động của con lắc là A = 2 E m ω 2 = 2.0 , 128 0 , 1.20 2 = 8 c m