Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
pt <=> x^4+x^3+x^2+x^2+x+1=0
<=> x^4+x^2+x^3+x+x^2+1=0
<=> x^2(x^2+1)+x(x^2+1)+(x^2+1)=0
<=>(x^2+x+1)(x^2+1)=0
<=> x^2+x+1=0 (Vô nghiệm)
hoặc x^2+1=0 (vô lý)
=>pt vô nghiệm
tk mk nhé
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow x^4-x^3+x^2+x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\left(ktm\right)\\x^2-x+1=0=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
b) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2=0\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x+1=0\\x^2-x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\\left(x-\frac{1}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\)Phương trình vô nghiệm (ĐPCM)
c. - x ( x + 3 ) + 2 = ( 4x + 1 ) ( x - 1 ) + 2x
<=> - x2 - 3x + 2 = 4x2 - x - 1
<=> 4x2 - x - 1 + x2 + 3x - 2 = 0
<=> 5x2 + 2x - 3 = 0
<=> ( 5x2 + 5x ) - ( 3x + 3 ) = 0
<=> 5x ( x + 1 ) - 3 ( x + 1 ) = 0
<=> ( 5x - 3 ) ( x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-1\end{cases}}\)
d. ( 2x + 3 ) ( x - 3 ) - ( x - 3 ) ( x + 1 ) = ( 2 - x ) ( 3x + 1 ) + 3
<=> ( x - 3 ) ( 2x + 3 - x - 1 ) = - 3x2 + 5x + 5
<=> x2 - x - 6 = - 3x2 + 5x + 5
<=> - 3x2 + 5x + 5 - x2 + x + 6 = 0
<=> - 4x2 + 6x + 11 = 0
\(\Leftrightarrow x=\frac{6\pm\sqrt{\left(-6\right)^2-4\left(4.\left(-11\right)\right)}}{2.4}\)( xài công thức bậc 2 )
\(\Leftrightarrow x=\frac{6\pm2\sqrt{53}}{8}\Leftrightarrow x=\frac{3\pm\sqrt{53}}{4}\)
Vậy \(x=\frac{3+\sqrt{53}}{4};x=\frac{3-\sqrt{53}}{4}\)
\(x^2-2x+3=\left(x^2-2x+1\right)+2=\left(x-1\right)^2+2\ge2\forall x\in R\)
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
Đề bài sai, phương trình bậc 3 luôn luôn có nghiệm
Có nghiệm -1 mà bạn