Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{371^2}+2\sqrt{31^2}-\sqrt{121^2}=371+2.31-121=371+62-121=312\)
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
Bài 4:
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
=>AM=BC/2=5cm
b: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của BC
MD//AC
DO đó;Dlà trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: Elà trung điểm của AC
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC
hay BDEC là hình thang
ta co :
(x+y+z).(x/(z+y)+y/(z+x)+z/(x+y))=1
ban cu phan tich cai bieu thuc tren thi ket qua thu duoc se la:
x^2/(z+y)+y^2/(x+z)+z^2/(x+y)+z+x+y=1
ma x+y+z=1===>dpcm
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
a/ 12x^2+4x/9x^2-1
=4x(3x+1)/(3x)^2-1
=4x(3x+1)/(3x-1)(3x+1)
bạn rút gọn 3x+1 vs 3x-1 vậy kết quả là 4x/3x
Bài 1:
a) đk: \(x\ne\pm2\)
b) Ta có:
\(A=\left(\frac{1}{2-x}+\frac{3x}{x^2-4}-\frac{2}{2+x}\right)\div\left(\frac{x^2+4}{4-x^2}+1\right)\)
\(A=\left[\frac{1}{2-x}-\frac{3x}{\left(2-x\right)\left(2+x\right)}-\frac{2}{2+x}\right]\div\frac{x^2+4+4-x^2}{\left(2-x\right)\left(2+x\right)}\)
\(A=\frac{2+x-3x-2\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}\div\frac{8}{\left(2-x\right)\left(2+x\right)}\)
\(A=\frac{2-2x-4+2x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}\)
\(A=\frac{-2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}=-\frac{1}{4}\)
=> đpcm
Bài 2:
a) đk: \(x\ne\left\{-3;0;3\right\}\)
b) Ta có:
\(B=\left[\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right]\div\frac{3x^2}{x+3}\)
\(B=\left[\frac{-x^2-3x-9}{\left(x+3\right)^2}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)
\(B=\frac{-x^2-3x-9+x\left(x+3\right)}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)
\(B=\frac{-9}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)
\(B=-\frac{3}{x\left(x+3\right)}\)
c) Khi B = 1/2 thì: \(-\frac{3}{x\left(x+3\right)}=\frac{1}{2}\)
\(\Leftrightarrow x^2+3x=-6\Leftrightarrow x^2+3x+6=0\)
\(\Leftrightarrow\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{15}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\left(ktm\right)\)