K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

\(A=3\left(x-3\right)\left(x+7\right)+\left(x+4\right)^2+48\)

\(A=3\left(x^2-4x-21\right)+\left(x^2+8x+16\right)+48\)

\(A=\left(3x^2+x^2\right)-\left(12x-8x\right)-\left(21-16-48\right)\)

\(A=4x^2-4x+43\)

\(A=\left(4x^2-4x+1\right)+42\)

\(A=\left(2x+1\right)^2+42\)

Thay \(x=\frac{1}{2}\) vao A ta duoc:

\(A=\left(2\cdot\frac{1}{2}+1\right)^2+42=46\)

\(A=3\left(x-3\right)\left(x-7\right)+\left(x+4\right)^2+48\)

\(=3x^2-13x+63+x^2+8x+16+48\)

\(=4x^2-5x+127\)

\(4\cdot0,25-5\cdot0,5+127=1-1+127=127\)

24 tháng 12 2021

a) điều kiện xác định: x≠3 và x≠2

b) \(\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)=\(\dfrac{x+2}{x-3}\)

Tại x=13 ta có \(\dfrac{13+2}{13-3}\)=\(\dfrac{3}{2}\)

 

9 tháng 12 2015

Kệ cái thằng ấy, nó có trả lời đc câu nào tử tế đâu. Câu **** ý mà, kệ nó đi

30 tháng 7 2018

C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính

31 tháng 7 2018

còn câu a) thì sao???????????? @_@

7 tháng 5 2022

\(\dfrac{x\left(x-8\right)+3\left(x+6\right)}{\left(x+6\right)\left(x-8\right)}=\dfrac{-12x+33}{\left(x+6\right)\left(x-8\right)}\left(đk:x\ne-6;8\right)\)

\(x^2-8x+3x+18=-12x+33\)

\(x^2-5x+18+12x-33=0\)

\(x^2+7x+15=0\)

\(\text{∆}=7^2-4.15=-11< 0\)

⇒ pt vô nghiệm

8 tháng 5 2022

đk : x khác -6 ; 8 

\(x^2-8x+3x+18=-12x+33\Leftrightarrow x^2+7x-25=0\)

\(\Leftrightarrow x=\dfrac{-7\pm\sqrt{149}}{2}\)

1 tháng 1 2022

a) \(x^7+x^5+1\)

\(=x^7-x+x^5-x^2+x^2+x+1\)

\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

b) \(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3

15 tháng 3 2020

i) (x - 1)(5x + 3) = (3x - 8)(x - 1)

<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8

<=> 5x2 - 2x - 3 = 3x2 - 11x + 8

<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0

<=> 2x2 + 9x - 11 = 0

<=> 2x2 + 11x - 2x - 11 = 0

<=> x(2x + 11) - (2x + 11) = 0

<=> (x - 1)(2x + 11) = 0

<=> x - 1 = 0 hoặc 2x + 11 = 0

<=> x = 0 hoặc x = -11/2

m) 2x(x - 1) = x2 - 1

<=> 2x2 - 2x = x2 - 1

<=> 2x2 - 2x - x2 + 1 = 0

<=> x2 - 2x + 1 = 0

<=> (x - 1)2 = 0

<=> x - 1 = 0

<=> x = 1

n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)

<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x

<=> -31x + 22 - 3x2 = 16x - 15x2 - 4

<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0

<=> 47x - 18 - 12x2 = 0

<=> -12x2 + 47x - 26 = 0

<=> 12x2 - 47x + 26 = 0

<=> 12x2 - 8x - 39x + 26 = 0

<=> 4x(3x - 2) - 13(3x - 2) = 0

<=> (4x - 13)(3x - 2) = 0

<=> 4x - 13 = 0 hoặc 3x - 2 = 0

<=> x = 13/4 hoặc x = 2/3