K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính

31 tháng 7 2018

còn câu a) thì sao???????????? @_@

`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`

`= 2xy`.

Thay `x = 2/3; y = -3/4` vào BT:

`2 . 2/3 . -3/4 = -1.`

`b, x(x-2y) - y(y^2-2x)`

`= x^2 - 2xy - y^3 + 2xy`

`= x^2 - y^3`

Thay `x = 5; y =3` vào BT:

`= 5^2 - 3^3 = 25 - 27 = -2`

22 tháng 7 2023

a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)

\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)

\(=2xy\)

Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:

\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)

b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)

\(=x^2-2xy-y^3+2xy\)

\(=x^2-y^3\)

Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các biểu...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8

Khi x=201 thì A=10*201+8=2018

2: B=4x^2+20x+25-4x^2+12=20x+37

Khi x=1/20 thì B=1+37=38

7 tháng 7 2023

1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)

\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)

\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)

\(A=4\left(4x+2\right)-6x\)

\(A=16x+8-6x\)

\(A=10x+8\)

Thay \(x=201\) vào A ta có:

\(A=10\cdot201+8=2010+8=2018\)

Vậy: ....

2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)

\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)

\(B=4x^2+20x+25-4x^2+36\)

\(B=20x+61\)

Thay \(x=\dfrac{1}{20}\) vào B ta có:

\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)

Vậy: ...

25 tháng 7 2017

Câu 1 :

\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=\left(2x\right)^3+y^3=8x^3+y^3\)Câu 2:

\(A=3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)\(\Leftrightarrow3\left(6x^2-2x-6\right)-2\left(4x^2+13x-12\right)+36x-9x^2=0\)\(\Leftrightarrow18x^2-6x-18-8x^2-26x+24+36x-9x^2=0\)\(\Leftrightarrow x^2+4x+6=0\)

\(\Leftrightarrow\left(x+2\right)^2=-2\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

Vậy pt vô nghiệm

Vậy:ko......

Câu 3:

\(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)

\(\Leftrightarrow35x^2+10x-21x-6-35x^2+35x-42=0\)\(\Leftrightarrow14x=48\Leftrightarrow x=\dfrac{7}{24}\)

Câu 4:

\(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)

\(\Leftrightarrow6x^2-3x+10x-5+5x+10-6x^2-12x-x=0\)\(\Leftrightarrow-x=-5\Rightarrow x=5\)

câu 6,

25 tháng 7 2017

Câu 6: \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)

\(\Rightarrow10x^2+9x-\left(10x^2-2x+15x-3\right)=8\)

\(\Rightarrow10x^2+9x-10x^2+2x-15x+3=8\)

\(\Rightarrow-4x+3=8\)

\(\Rightarrow-4x=5\Rightarrow x=\dfrac{-5}{4}\)

Câu 7: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\)

\(\Rightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)

\(\Rightarrow x^3+x^2+6x^2+6x-x^3=5x\)

\(\Rightarrow7x^2=-x\)

\(\Rightarrow7x=-1\Rightarrow x=\dfrac{-1}{7}\).

16 tháng 11 2021

a) \(\left(x-10\right)^2-x\left(x+8\right)=-12x+100=-11,76+100=88,24\)

b) \(x^3-9x^2+27x-27=\left(x-3\right)^3=\left(5-3\right)^3=8\)

c) \(6x\left(2x-7\right)-\left(3x-5\right)\left(4x+7\right)=-43x+35=121\)

16 tháng 11 2021

\(a)\) \(\left(x-10\right)^{^2}-x.\left(x+8\right)\) \(với\) \(x=0,98\)

\(=-12x+100\)

\(=-11,76+100\)

\(=88,24\)

\(b)\) \(x^3-9x^2+27.x-27\) \(với\) \(x=5\)

\(=\left(x-3\right)^3\)

\(=\left(5-3\right)^3\)

\(=8\)

\(c)\)\(6x.\left(2x-7\right)-\left(3x-5\right).\left(4x+7\right)\) \(tại\) \(x=-2\)

\(=-43+35\)

\(=121\)

Chúc bạn hôc tốt nha ❤

24 tháng 6 2023

\(3,x=\dfrac{1}{2},y=-1\)

\(\Rightarrow C=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+1\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-1\right)-1\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)

\(\Rightarrow C=\dfrac{1}{2}\left(\dfrac{1}{4}+1\right)-\dfrac{1}{4}\left(-\dfrac{1}{2}\right)-\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)

\(\Rightarrow C=\dfrac{1}{2}.\dfrac{5}{4}+\dfrac{1}{8}-\left(-\dfrac{1}{4}\right)\)

\(\Rightarrow C=\dfrac{5}{8}+\dfrac{1}{8}+\dfrac{1}{4}\)

\(\Rightarrow C=1\)

\(4,x=\dfrac{1}{2},y=-100\)

\(\Rightarrow D=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+100\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-100\right)-100\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)

\(\Rightarrow D=\dfrac{1}{2}\left(\dfrac{1}{4}+100\right)-\dfrac{1}{4}\left(-\dfrac{199}{2}\right)-100\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)

\(\Rightarrow D=\dfrac{1}{2}.\dfrac{401}{4}+\dfrac{199}{8}-100.\left(-\dfrac{1}{4}\right)\)

\(\Rightarrow D=\dfrac{401}{8}+\dfrac{199}{8}+25\)

\(\Rightarrow D=100\)

3: C=x^3-xy-x^3-x^2y+x^2y-xy

=-2xy=-2*1/2*(-1)=1

4: D=x^3-xy-x^3-x^2y+x^2y-xy

=-2xy

=-2*1/2*(-100)=100

12 tháng 6 2018

a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)

=\(9x^2+54\)=\(9\left(x^2+6\right)\)

b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)

=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)

=\(x^3-16x^2+25x\)

c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)