K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\dfrac{x+1}{29}+\dfrac{x+3}{27}=\dfrac{x-3}{33}+\dfrac{x-7}{37}\)

\(\Leftrightarrow\dfrac{x+30}{29}+\dfrac{x+30}{27}-\dfrac{x+30}{33}-\dfrac{x+30}{37}=0\)

\(\Leftrightarrow x+30=0\)

hay x=-30

25 tháng 7 2021

Cám mơn bn nhìu

\(\text{a, 3(x+1)+4x=10}\)

\(\Rightarrow3x+3+4x=10\)

\(\Rightarrow7x+3=10\)

\(\Rightarrow7x=10-3=7\)

\(\Rightarrow x=1\)

c, x+1/10+x+2/9=x+3/8+x+4/7

=> (x+1/10 +1) +(x+2/9 +1)= ( x+3/8 +1) +(x+4/7 +1)

=> x+11/10 + x+11/9 = x+11/8 + x+11/7

...............

a) \(3\left(x+1\right)+4x=10\)

\(\Rightarrow3x+3+4x=10\)

\(\Rightarrow3x+4x=10-3\)

\(\Rightarrow7x=7\)

\(\Rightarrow x=7\)

29 tháng 6 2019

I 2x-3 I = I x+1 I

2x-3 = x+1

x+1 - 2x+3=0

x (1-2) +1+3=0

-1x +4 =0

-1x      = 0-4

-1x      =-4

x          = -4 : -1

x         =4

Trả lời:

    \(\left|2x-3\right|=\left|x+1\right|\)

\(\Rightarrow2x-3=x+1\) hoặc   \(2x-3=-\left(x+1\right)\)

TH1:   \(2x-3=x+1\)

           \(2x-x=1+3\)

            \(x=4\)

TH2: \(2x-3=-\left(x+1\right)\)

         \(2x-3=-x-1\)

          \(2x+x=-1+3\)

          \(3x=2\)

          \(x=\frac{2}{3}\)

          Vậy \(x=4;x=\frac{2}{3}\)

           

20 tháng 9 2020

a) \(\left|2x-1\right|+\frac{1}{3}=0\)

\(\Leftrightarrow\left|2x-1\right|=-\frac{1}{3}\)

=> vô lý

=> PT vô nghiệm

b) \(\left|x+2\right|+\left|x-3\right|=0\)

\(\Leftrightarrow\left|x+2\right|=-\left|x-3\right|\)

Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\-\left|x-3\right|\le0\end{cases}\left(\forall x\right)}\) nên dấu "=" xảy ra khi: 

\(\left|x+2\right|=-\left|x-3\right|=0\Rightarrow\hept{\begin{cases}x=-2\\x=3\end{cases}}\) (vô lý)

=> PT vô nghiệm

24 tháng 11 2015

7x+2/5x+7=7x-1/5x+1=>37/5x+7=34/5x+1=>37/5x-34/5x=1-7=>3/5x=-6=>x=-6:3/5=-10 vay x=-10 nho ****

`#040911`

\(x-\dfrac{1}{6}=x+\dfrac{5}{7}\\ \Rightarrow x-x=\dfrac{1}{6}+\dfrac{5}{7}\\\Rightarrow0=\dfrac{37}{42}\left(\text{vô lý}\right)\\ \text{Vậy, x không có giá trị nào thỏa mãn.} \)

Ta có: \(\left(x-1\right)^{2020}\ge0\forall x\)

\(\left|y-3\right|\ge0\forall y\)

Do đó: \(\left(x-1\right)^{2020}+\left|y-3\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy: (x,y)=(1;3)

27 tháng 4 2020

a) Từ \(5x=7y\)\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)

mà \(y-x=-32\)\(\Rightarrow\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{-32}{-2}=16\)

\(\Rightarrow x=16.7=112\)và \(y=16.5=80\)

Vậy \(x=112\)và \(y=80\)

b) \(\frac{81}{3^x}=9\)\(\Leftrightarrow3^x=9\)\(\Leftrightarrow3^x=3^2\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

19 tháng 11 2021

\(3^{x+1}-2.3^x=243\\ \Rightarrow3^x.3-2.3^x=243\\ \Rightarrow3^x=3^5\\ \Rightarrow x=5\)

19 tháng 11 2021

\(d.3^{x+1}-2.3^x=243\)