Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: A=-1/2*xy^3*4x^2y^2=-2x^3y^5
Bậc là 8
Phần biến là x^3;y^5
Hệ số là -2
2:
a: P(x)=3x+4x^4-2x^3+4x^2-x^4-6
=3x^4-2x^3+4x^2+3x-6
Q(x)=2x^4+4x^2-2x^3+x^4+3
=3x^4-2x^3+4x^2+3
b: A(x)=P(x)-Q(x)
=3x^4-2x^3+4x^2+3x-6-3x^4+2x^3-4x^2-3
=3x-9
A(x)=0
=>3x-9=0
=>x=3
a) Xét ΔOBH và ΔODA có
OB=OD(gt)
\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)
OH=OA(O là trung điểm của HA)
Do đó: ΔOBH=ΔODA(c-g-c)
Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)
mà \(\widehat{OHB}=90^0\)(gt)
nên \(\widehat{OAD}=90^0\)
hay AH\(\perp\)AD(đpcm)
b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có
OA=OH(O là trung điểm của AH)
\(\widehat{AOE}=\widehat{HOC}\)(hai góc đối đỉnh)
Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(hai cạnh tương ứng)(1)
Ta có: ΔAOD=ΔHOB(cmt)
nên AD=HB(Hai cạnh tương ứng)(2)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng)(3)
Từ (1), (2) và (3) suy ra AD=AE
mà E,A,D thẳng hàng(gt)
nên A là trung điểm của DE
) Xét ΔOBH và ΔODA có
OB=OD(gt)
ˆBOH=ˆDOABOH^=DOA^(hai góc đối đỉnh)
OH=OA(O là trung điểm của HA)
Do đó: ΔOBH=ΔODA(c-g-c)
Suy ra: ˆOHB=ˆOADOHB^=OAD^(hai góc tương ứng)
mà ˆOHB=900OHB^=900(gt)
nên ˆOAD=900OAD^=900
hay AH⊥⊥AD(đpcm)
b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có
OA=OH(O là trung điểm của AH)
ˆAOE=ˆHOCAOE^=HOC^(hai góc đối đỉnh)
Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AE=HC(hai cạnh tương ứng)(1)
Ta có: ΔAOD=ΔHOB(cmt)
nên AD=HB(Hai cạnh tương ứng)(2)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(Hai cạnh tương ứng)(3)
Từ (1), (2) và (3) suy ra AD=AE
mà E,A,D thẳng hàng(gt)
nên A là trung điểm của DE
\(ĐK:x\ge-3\\ PT\Leftrightarrow\sqrt{x-3}=2\Leftrightarrow x-3=4\Leftrightarrow x=7\left(tm\right)\)
ý bạn là \(x-y-z=-33?\)
Ta có \(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y-z}{15-10-6}=\dfrac{-33}{-1}=33\\ \Rightarrow\left\{{}\begin{matrix}x=33\cdot15=495\\y=33\cdot10=330\\z=33\cdot6=198\end{matrix}\right.\)
Bài 9:
a: Xét ΔAMD vuông tại M và ΔAMI vuông tại M có
AM chung
MD=MI
Do đó: ΔAMD=ΔAMI
Xét ΔAND vuông tại N và ΔANK vuông tại N có
AN chung
ND=NK
Do đó: ΔAND=ΔANK
b: ta có: ΔAMD=ΔAMI
=>\(\widehat{MAD}=\widehat{MAI}\)
=>\(\widehat{DAB}=\widehat{IAB}\)
mà tia AB nằm giữa hai tia AD,AI
nên AB là phân giác của góc DAI
=>\(\widehat{DAI}=2\cdot\widehat{DAB}\)
Ta có: ΔAND=ΔANK
=>\(\widehat{DAN}=\widehat{KAN}\)
=>\(\widehat{DAC}=\widehat{KAC}\)
mà tia AC nằm giữa hai tia AD,AK
nên AC là phân giác của góc DAK
=>\(\widehat{DAK}=2\cdot\widehat{DAC}\)
Ta có: \(\widehat{DAK}+\widehat{DAI}=\widehat{KAI}\)
=>\(\widehat{KAI}=2\cdot\left(\widehat{DAB}+\widehat{DAC}\right)\)
=>\(\widehat{KAI}=2\cdot\widehat{BAC}=180^0\)
=>K,A,I thẳng hàng
c: Ta có: AD=AI(ΔADM=ΔAIM)
AD=AK(ΔADN=ΔAKN)
Do đó: AI=AK
mà K,A,I thẳng hàng
nên A là trung điểm của KI
d: Xét tứ giác AMDN có
\(\widehat{AMD}=\widehat{AND}=\widehat{MAN}=90^0\)
=>AMDN là hình chữ nhật
Hình chữ nhật AMDN có AD là phân giác của góc MAN
nên AMDN là hình vuông
=>DA là phân giác của góc NDM
=>DA là phân giác của góc KDI
Xét ΔDKI có
DA là đường trung tuyến
DA là đường phân giác
Do đó: ΔDKI cân tại D
Ta có: ΔDKI cân tại D
mà DA là đường trung tuyến
nên DA\(\perp\)KI
a) Ta có: a⊥c,b⊥c
=> a//b
b) \(\widehat{A_2}+\widehat{A_1}=180^0\)(kề bù)
\(\Rightarrow\widehat{A_2}=180^0-115^0=65^0\)
\(\widehat{B_1}=\widehat{A_2}=65^0\)(so le trong do a//b)
\(\Rightarrow\widehat{B_1}=\widehat{B_3}=65^0\)(đối đỉnh)
\(=5+5-3-3=4\)
= 5 + 5 - 3 - 3 = 4